Abstract:In our previous work, $i.e.$, HNF-Net, high-resolution feature representation and light-weight non-local self-attention mechanism are exploited for brain tumor segmentation using multi-modal MR imaging. In this paper, we extend our HNF-Net to HNF-Netv2 by adding inter-scale and intra-scale semantic discrimination enhancing blocks to further exploit global semantic discrimination for the obtained high-resolution features. We trained and evaluated our HNF-Netv2 on the multi-modal Brain Tumor Segmentation Challenge (BraTS) 2021 dataset. The result on the test set shows that our HNF-Netv2 achieved the average Dice scores of 0.878514, 0.872985, and 0.924919, as well as the Hausdorff distances ($95\%$) of 8.9184, 16.2530, and 4.4895 for the enhancing tumor, tumor core, and whole tumor, respectively. Our method won the RSNA 2021 Brain Tumor AI Challenge Prize (Segmentation Task), which ranks 8th out of all 1250 submitted results.
Abstract:In some Internet of Things (IoT) applications, multi-path propagation is a main constraint of communication channel. Recently, the chaotic baseband wireless communication system (CBWCS) is promising to eliminate the inter-symbol interference (ISI) caused by multipath propagation. However, the current technique is only capable of removing the partial effect of ISI, due to only past decoded bits are available for the suboptimal decoding threshold calculation. However, the future transmitting bits also contribute to the threshold. The unavailable future information bits needed by the optimal decoding threshold are an obstacle to further improve the bit error rate (BER) performance. Different from the previous method using echo state network (ESN) to predict one future information bit, the proposed method in this paper predicts the optimal threshold directly using ESN. The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by removing the threshold calculation from the transmitting symbols and channel information, which achieves better BER performance as compared to the previous method. The reason for this superior result lies in two folds, first, the proposed ESN is capable of using more future symbols information conveyed by the ESN input to get more accurate threshold; second, the proposed method here does not need to estimate the channel information using Least Square method, which avoids the extra error caused by inaccurate channel information estimation. By this way, the calculation complexity is decreased as compared to the previous method. Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel, show the effectiveness and superiority of the proposed method.