Abstract:In some Internet of Things (IoT) applications, multi-path propagation is a main constraint of communication channel. Recently, the chaotic baseband wireless communication system (CBWCS) is promising to eliminate the inter-symbol interference (ISI) caused by multipath propagation. However, the current technique is only capable of removing the partial effect of ISI, due to only past decoded bits are available for the suboptimal decoding threshold calculation. However, the future transmitting bits also contribute to the threshold. The unavailable future information bits needed by the optimal decoding threshold are an obstacle to further improve the bit error rate (BER) performance. Different from the previous method using echo state network (ESN) to predict one future information bit, the proposed method in this paper predicts the optimal threshold directly using ESN. The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by removing the threshold calculation from the transmitting symbols and channel information, which achieves better BER performance as compared to the previous method. The reason for this superior result lies in two folds, first, the proposed ESN is capable of using more future symbols information conveyed by the ESN input to get more accurate threshold; second, the proposed method here does not need to estimate the channel information using Least Square method, which avoids the extra error caused by inaccurate channel information estimation. By this way, the calculation complexity is decreased as compared to the previous method. Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel, show the effectiveness and superiority of the proposed method.
Abstract:To retrieve the information from the serious distorted received signal is the key challenge of communication signal processing. The chaotic baseband communication promises theoretically to eliminate the inter-symbol interference (ISI), however, it needs complicated calculation, if it is not impossible. In this paper, a genetic algorithm support vector machine (GA-SVM) based symbol detection method is proposed for chaotic baseband wireless communication system (CBWCS), by this way, treating the problem from a different viewpoint, the symbol decoding process is converted to be a binary classification through GA-SVM model. A trained GA-SVM model is used to decode the symbols directly at the receiver, so as to improve the bit error rate (BER) performance of the CBWCS and simplify the symbol detection process by removing the channel identification and the threshold calculation process as compared to that using the calculated threshold to decode symbol in the traditional methods. The simulation results show that the proposed method has better BER performance in both the static and time-varying wireless channels. The experimental results, based on the wireless open-access research platform, indicate that the BER of the proposed GA-SVM based symbol detection approach is superior to the other counterparts under a practical wireless multipath channel.