Abstract:The development of large language models has ushered in new paradigms for education. This paper centers on the multi-Agent system in education and proposes the von Neumann multi-Agent system framework. It breaks down each AI Agent into four modules: control unit, logic unit, storage unit, and input-output devices, defining four types of operations: task deconstruction, self-reflection, memory processing, and tool invocation. Furthermore, it introduces related technologies such as Chain-of-Thought, Reson+Act, and Multi-Agent Debate associated with these four types of operations. The paper also discusses the ability enhancement cycle of a multi-Agent system for education, including the outer circulation for human learners to promote knowledge construction and the inner circulation for LLM-based-Agents to enhance swarm intelligence. Through collaboration and reflection, the multi-Agent system can better facilitate human learners' learning and enhance their teaching abilities in this process.
Abstract:The rapid development of Generative AI (GAI) has sparked revolutionary changes across various aspects of education. Personalized learning, a focal point and challenge in educational research, has also been influenced by the development of GAI. To explore GAI's extensive impact on personalized learning, this study investigates its potential to enhance various facets of personalized learning through a thorough analysis of existing research. The research comprehensively examines GAI's influence on personalized learning by analyzing its application across different methodologies and contexts, including learning strategies, paths, materials, environments, and specific analyses within the teaching and learning processes. Through this in-depth investigation, we find that GAI demonstrates exceptional capabilities in providing adaptive learning experiences tailored to individual preferences and needs. Utilizing different forms of GAI across various subjects yields superior learning outcomes. The article concludes by summarizing scenarios where GAI is applicable in educational processes and discussing strategies for leveraging GAI to enhance personalized learning, aiming to guide educators and learners in effectively utilizing GAI to achieve superior learning objectives.