Abstract:Test-time adaptation (TTA) aims to adapt a model, initially trained on training data, to potential distribution shifts in the test data. Most existing TTA studies, however, focus on classification tasks, leaving a notable gap in the exploration of TTA for semantic segmentation. This pronounced emphasis on classification might lead numerous newcomers and engineers to mistakenly assume that classic TTA methods designed for classification can be directly applied to segmentation. Nonetheless, this assumption remains unverified, posing an open question. To address this, we conduct a systematic, empirical study to disclose the unique challenges of segmentation TTA, and to determine whether classic TTA strategies can effectively address this task. Our comprehensive results have led to three key observations. First, the classic batch norm updating strategy, commonly used in classification TTA, only brings slight performance improvement, and in some cases it might even adversely affect the results. Even with the application of advanced distribution estimation techniques like batch renormalization, the problem remains unresolved. Second, the teacher-student scheme does enhance training stability for segmentation TTA in the presence of noisy pseudo-labels. However, it cannot directly result in performance improvement compared to the original model without TTA. Third, segmentation TTA suffers a severe long-tailed imbalance problem, which is substantially more complex than that in TTA for classification. This long-tailed challenge significantly affects segmentation TTA performance, even when the accuracy of pseudo-labels is high. In light of these observations, we conclude that TTA for segmentation presents significant challenges, and simply using classic TTA methods cannot address this problem well.
Abstract:Federated domain adaptation (FDA) aims to collaboratively transfer knowledge from source clients (domains) to the related but different target client, without communicating the local data of any client. Moreover, the source clients have different data distributions, leading to extremely challenging in knowledge transfer. Despite the recent progress in FDA, we empirically find that existing methods can not leverage models of heterogeneous domains and thus they fail to achieve excellent performance. In this paper, we propose a model-based method named FDAC, aiming to address {\bf F}ederated {\bf D}omain {\bf A}daptation based on {\bf C}ontrastive learning and Vision Transformer (ViT). In particular, contrastive learning can leverage the unlabeled data to train excellent models and the ViT architecture performs better than convolutional neural networks (CNNs) in extracting adaptable features. To the best of our knowledge, FDAC is the first attempt to learn transferable representations by manipulating the latent architecture of ViT under the federated setting. Furthermore, FDAC can increase the target data diversity by compensating from each source model with insufficient knowledge of samples and features, based on domain augmentation and semantic matching. Extensive experiments on several real datasets demonstrate that FDAC outperforms all the comparative methods in most conditions. Moreover, FDCA can also improve communication efficiency which is another key factor in the federated setting.