Abstract:Large neural networks achieve remarkable performance, but their size hinders deployment on resource-constrained devices. While various compression techniques exist, parameter sharing remains relatively unexplored. This paper introduces Fine-grained Parameter Sharing (FiPS), a novel algorithm that leverages the relationship between parameter sharing, tensor decomposition, and sparsity to efficiently compress large vision transformer models. FiPS employs a shared base and sparse factors to represent shared neurons across multi-layer perception (MLP) modules. Shared parameterization is initialized via Singular Value Decomposition (SVD) and optimized by minimizing block-wise reconstruction error. Experiments demonstrate that FiPS compresses DeiT-B and Swin-L MLPs to 25-40% of their original parameter count while maintaining accuracy within 1 percentage point of the original models.
Abstract:In the era dominated by information overload and its facilitation with Large Language Models (LLMs), the prevalence of misinformation poses a significant threat to public discourse and societal well-being. A critical concern at present involves the identification of machine-generated news. In this work, we take a significant step by introducing a benchmark dataset designed for neural news detection in four languages: English, Turkish, Hungarian, and Persian. The dataset incorporates outputs from multiple multilingual generators (in both, zero-shot and fine-tuned setups) such as BloomZ, LLaMa-2, Mistral, Mixtral, and GPT-4. Next, we experiment with a variety of classifiers, ranging from those based on linguistic features to advanced Transformer-based models and LLMs prompting. We present the detection results aiming to delve into the interpretablity and robustness of machine-generated texts detectors across all target languages.