Abstract:In this work we show that the size versus accuracy trade-off of neural network quantization can be significantly improved by increasing the quantization dimensionality. We propose the GPTVQ method, a new fast method for post-training vector quantization (VQ) that scales well to Large Language Models (LLMs). Our method interleaves quantization of one or more columns with updates to the remaining unquantized weights, using information from the Hessian of the per-layer output reconstruction MSE. Quantization codebooks are initialized using an efficient data-aware version of the EM algorithm. The codebooks are then updated, and further compressed by using integer quantization and SVD-based compression. GPTVQ establishes a new state-of-the art in the size vs accuracy trade-offs on a wide range of LLMs such as Llama-v2 and Mistral. Furthermore, our method is efficient: on a single H100 it takes between 3 and 11 hours to process a Llamav2-70B model, depending on quantization setting. Lastly, with on-device timings for VQ decompression on a mobile CPU we show that VQ leads to improved latency compared to using a 4-bit integer format.
Abstract:Polyhedral techniques have been widely used for automatic code optimization in low-level compilers and higher-level processes. Loop optimization is central to this technique, and several polyhedral schedulers like Feautrier, Pluto, isl and Tensor Scheduler have been proposed, each of them targeting a different architecture, parallelism model, or application scenario. The need for scenario-specific optimization is growing due to the heterogeneity of architectures. One of the most critical cases is represented by NPUs (Neural Processing Units) used for AI, which may require loop optimization with different objectives. Another factor to be considered is the framework or compiler in which polyhedral optimization takes place. Different scenarios, depending on the target architecture, compilation environment, and application domain, may require different kinds of optimization to best exploit the architecture feature set. We introduce a new configurable polyhedral scheduler, PolyTOPS, that can be adjusted to various scenarios with straightforward, high-level configurations. This scheduler allows the creation of diverse scheduling strategies that can be both scenario-specific (like state-of-the-art schedulers) and kernel-specific, breaking the concept of a one-size-fits-all scheduler approach. PolyTOPS has been used with isl and CLooG as code generators and has been integrated in MindSpore AKG deep learning compiler. Experimental results in different scenarios show good performance: a geomean speedup of 7.66x on MindSpore (for the NPU Ascend architecture) hybrid custom operators over isl scheduling, a geomean speedup up to 1.80x on PolyBench on different multicore architectures over Pluto scheduling. Finally, some comparisons with different state-of-the-art tools are presented in the PolyMage scenario.