Abstract:Developing whole-body tactile skins for robots remains a challenging task, as existing solutions often prioritize modular, one-size-fits-all designs, which, while versatile, fail to account for the robot's specific shape and the unique demands of its operational context. In this work, we introduce the GenTact Toolbox, a computational pipeline for creating versatile whole-body tactile skins tailored to both robot shape and application domain. Our pipeline includes procedural mesh generation for conforming to a robot's topology, task-driven simulation to refine sensor distribution, and multi-material 3D printing for shape-agnostic fabrication. We validate our approach by creating and deploying six capacitive sensing skins on a Franka Research 3 robot arm in a human-robot interaction scenario. This work represents a shift from one-size-fits-all tactile sensors toward context-driven, highly adaptable designs that can be customized for a wide range of robotic systems and applications.
Abstract:Estimating the location of contact is a primary function of artificial tactile sensing apparatuses that perceive the environment through touch. Existing contact localization methods use flat geometry and uniform sensor distributions as a simplifying assumption, limiting their ability to be used on 3D surfaces with variable density sensing arrays. This paper studies contact localization on an artificial skin embedded with mutual capacitance tactile sensors, arranged non-uniformly in an unknown distribution along a semi-conical 3D geometry. A fully connected neural network is trained to localize the touching points on the embedded tactile sensors. The studied online model achieves a localization error of $5.7 \pm 3.0$ mm. This research contributes a versatile tool and robust solution for contact localization that is ambiguous in shape and internal sensor distribution.
Abstract:Tactile sensing is used in robotics to obtain real-time feedback during physical interactions. Fine object manipulation is a robotic application that benefits from a high density of sensors to accurately estimate object pose, whereas a low sensing resolution is sufficient for collision detection. Introducing variable sensing resolution into a single tactile sensing array can increase the range of tactile use cases, but also invokes challenges in localizing internal sensor positions. In this work, we present a mutual capacitance sensor array with variable sensor density, VARSkin, along with a localization method that determines the position of each sensor in the non-uniform array. When tested on two distinct artificial skin patches with concealed sensor layouts, our method achieves a localization accuracy within $\pm 2mm$. We also provide a comprehensive error analysis, offering strategies for further precision improvement.