Tactile sensing is used in robotics to obtain real-time feedback during physical interactions. Fine object manipulation is a robotic application that benefits from a high density of sensors to accurately estimate object pose, whereas a low sensing resolution is sufficient for collision detection. Introducing variable sensing resolution into a single tactile sensing array can increase the range of tactile use cases, but also invokes challenges in localizing internal sensor positions. In this work, we present a mutual capacitance sensor array with variable sensor density, VARSkin, along with a localization method that determines the position of each sensor in the non-uniform array. When tested on two distinct artificial skin patches with concealed sensor layouts, our method achieves a localization accuracy within $\pm 2mm$. We also provide a comprehensive error analysis, offering strategies for further precision improvement.