Abstract:Contemporary state-of-the-art video object segmentation (VOS) models compare incoming unannotated images to a history of image-mask relations via affinity or cross-attention to predict object masks. We refer to the internal memory state of the initial image-mask pair and past image-masks as a working memory buffer. While the current state of the art models perform very well on clean video data, their reliance on a working memory of previous frames leaves room for error. Affinity-based algorithms include the inductive bias that there is temporal continuity between consecutive frames. To account for inconsistent camera views of the desired object, working memory models need an algorithmic modification that regulates the memory updates and avoid writing irrelevant frames into working memory. A simple algorithmic change is proposed that can be applied to any existing working memory-based VOS model to improve performance on inconsistent views, such as sudden camera cuts, frame interjections, and extreme context changes. The resulting model performances show significant improvement on video data with these frame interjections over the same model without the algorithmic addition. Our contribution is a simple decision function that determines whether working memory should be updated based on the detection of sudden, extreme changes and the assumption that the object is no longer in frame. By implementing algorithmic changes, such as this, we can increase the real-world applicability of current VOS models.
Abstract:Traditional image tagging and retrieval algorithms have limited value as a result of being trained with heavily curated datasets. These limitations are most evident when arbitrary search words are used that do not intersect with training set labels. Weak labels from user generated content (UGC) found in the wild (e.g., Google Photos, FlickR, etc.) have an almost unlimited number of unique words in the metadata tags. Prior work on word embeddings successfully leveraged unstructured text with large vocabularies, and our proposed method seeks to apply similar cost functions to open source imagery. Specifically, we train a deep learning image tagging and retrieval system on large scale, user generated content (UGC) using sampling methods and joint optimization of word embeddings. By using the Yahoo! FlickR Creative Commons (YFCC100M) dataset, such an approach builds robustness to common unstructured data issues that include but are not limited to irrelevant tags, misspellings, multiple languages, polysemy, and tag imbalance. As a result, the final proposed algorithm will not only yield comparable results to state of the art in conventional image tagging, but will enable new capability to train algorithms on large, scale unstructured text in the YFCC100M dataset and outperform cited work in zero-shot capability.