Abstract:Contemporary state-of-the-art video object segmentation (VOS) models compare incoming unannotated images to a history of image-mask relations via affinity or cross-attention to predict object masks. We refer to the internal memory state of the initial image-mask pair and past image-masks as a working memory buffer. While the current state of the art models perform very well on clean video data, their reliance on a working memory of previous frames leaves room for error. Affinity-based algorithms include the inductive bias that there is temporal continuity between consecutive frames. To account for inconsistent camera views of the desired object, working memory models need an algorithmic modification that regulates the memory updates and avoid writing irrelevant frames into working memory. A simple algorithmic change is proposed that can be applied to any existing working memory-based VOS model to improve performance on inconsistent views, such as sudden camera cuts, frame interjections, and extreme context changes. The resulting model performances show significant improvement on video data with these frame interjections over the same model without the algorithmic addition. Our contribution is a simple decision function that determines whether working memory should be updated based on the detection of sudden, extreme changes and the assumption that the object is no longer in frame. By implementing algorithmic changes, such as this, we can increase the real-world applicability of current VOS models.
Abstract:Perception of the visually disjoint surfaces of our cluttered world as whole objects, physically distinct from those overlapping them, is a cognitive phenomenon called objectness that forms the basis of our visual perception. Shared by all vertebrates and present at birth in humans, it enables object-centric representation and reasoning about the visual world. We present a computational approach to objectness that leverages motion cues and spatio-temporal attention using a pair of supervised spatio-temporal R(2+1)U-Nets. The first network detects motion boundaries and classifies the pixels at those boundaries in terms of their local foreground-background sense. This motion boundary sense (MBS) information is passed, along with a spatio-temporal object attention cue, to an attentional surface perception (ASP) module which infers the form of the attended object over a sequence of frames and classifies its 'pixels' as visible or obscured. The spatial form of the attention cue is flexible, but it must loosely track the attended object which need not be visible. We demonstrate the ability of this simple but novel approach to infer objectness from phenomenology without object models, and show that it delivers robust perception of individual attended objects in cluttered scenes, even with blur and camera shake. We show that our data diversity and augmentation minimizes bias and facilitates transfer to real video. Finally, we describe how this computational objectness capability can grow in sophistication and anchor a robust modular video object perception framework.