Abstract:Handwritten Text Recognition (HTR) is a relevant problem in computer vision, and implies unique challenges owing to its inherent variability and the rich contextualization required for its interpretation. Despite the success of Self-Supervised Learning (SSL) in computer vision, its application to HTR has been rather scattered, leaving key SSL methodologies unexplored. This work focuses on one of them, namely Spatial Context-based SSL. We investigate how this family of approaches can be adapted and optimized for HTR and propose new workflows that leverage the unique features of handwritten text. Our experiments demonstrate that the methods considered lead to advancements in the state-of-the-art of SSL for HTR in a number of benchmark cases.
Abstract:The Layout Analysis (LA) stage is of vital importance to the correct performance of an Optical Music Recognition (OMR) system. It identifies the regions of interest, such as staves or lyrics, which must then be processed in order to transcribe their content. Despite the existence of modern approaches based on deep learning, an exhaustive study of LA in OMR has not yet been carried out with regard to the precision of different models, their generalization to different domains or, more importantly, their impact on subsequent stages of the pipeline. This work focuses on filling this gap in literature by means of an experimental study of different neural architectures, music document types and evaluation scenarios. The need for training data has also led to a proposal for a new semi-synthetic data generation technique that enables the efficient applicability of LA approaches in real scenarios. Our results show that: (i) the choice of the model and its performance are crucial for the entire transcription process; (ii) the metrics commonly used to evaluate the LA stage do not always correlate with the final performance of the OMR system, and (iii) the proposed data-generation technique enables state-of-the-art results to be achieved with a limited set of labeled data.