Abstract:Unmanned Surface Vehicles technology (USVs) is an exciting topic that essentially deploys an algorithm to safely and efficiently performs a mission. Although reinforcement learning is a well-known approach to modeling such a task, instability and divergence may occur when combining off-policy and function approximation. In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability. Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology. Our method contains two critical parts in order to perform missions in an unknown environment. The first is a path planner that is responsible for generating a potential effective path to a destination without considering the details of the root. The latter is a decision-making module that is responsible for short-term decisions on avoiding obstacles during the near future steps of USV exploitation within the context of the value function. Simulations were performed using two algorithms: a basic vanilla vessel navigator (VVN) as a baseline and an improved one for the vessel navigator with a planner and local view (VNPLV). Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions. Our model successfully demonstrated obstacle avoidance by means of deep reinforcement learning using planning adaptive paths in unknown environments.
Abstract:Texture is an important visual attribute used to describe images. There are many methods available for texture analysis. However, they do not capture the details richness of the image surface. In this paper, we propose a new method to describe textures using the artificial crawler model. This model assumes that each agent can interact with the environment and each other. Since this swarm system alone does not achieve a good discrimination, we developed a new method to increase the discriminatory power of artificial crawlers, together with the fractal dimension theory. Here, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. We validate our method on two texture datasets and the experimental results reveal that our method leads to highly discriminative textural features. The results indicate that our method can be used in different texture applications.
Abstract:In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.
Abstract:Texture analysis is an important field of investigation that has received a great deal of interest from computer vision community. In this paper, we propose a novel approach for texture modeling based on partial differential equation (PDE). Each image $f$ is decomposed into a family of derived sub-images. $f$ is split into the $u$ component, obtained with anisotropic diffusion, and the $v$ component which is calculated by the difference between the original image and the $u$ component. After enhancing the texture attribute $v$ of the image, Gabor features are computed as descriptors. We validate the proposed approach on two texture datasets with high variability. We also evaluate our approach on an important real-world application: leaf-texture analysis. Experimental results indicate that our approach can be used to produce higher classification rates and can be successfully employed for different texture applications.
Abstract:This paper presents a new method for dynamic texture recognition based on spatiotemporal Gabor filters. Dynamic textures have emerged as a new field of investigation that extends the concept of self-similarity of texture image to the spatiotemporal domain. To model a dynamic texture, we convolve the sequence of images to a bank of spatiotemporal Gabor filters. For each response, a feature vector is built by calculating the energy statistic. As far as the authors know, this paper is the first to report an effective method for dynamic texture recognition using spatiotemporal Gabor filters. We evaluate the proposed method on two challenging databases and the experimental results indicate that the proposed method is a robust approach for dynamic texture recognition.