Abstract:Social robotics researchers are increasingly interested in multi-party trained conversational agents. With a growing demand for real-world evaluations, our study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe. This case study investigates human improvisers co-creating with conversational agents in a professional theatre setting. We explore the technical capabilities and constraints of on-the-spot multi-party dialogue, providing comprehensive insights from both audience and performer experiences with AI on stage. Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses, stressing the user interface's crucial role. Audience feedback indicates an evolving interest for AI-driven live entertainment, direct human-AI interaction, and a diverse range of expectations about AI's conversational competence and utility as a creativity support tool. Human performers express immense enthusiasm, varied satisfaction, and the evolving public opinion highlights mixed emotions about AI's role in arts.
Abstract:Large language models can be used for collaborative storytelling. In this work we report on using GPT-3 \cite{brown2020language} to co-narrate stories. The AI system must track plot progression and character arcs while the human actors perform scenes. This event report details how a novel conversational agent was employed as creative partner with a team of professional improvisers to explore long-form spontaneous story narration in front of a live public audience. We introduced novel constraints on our language model to produce longer narrative text and tested the model in rehearsals with a team of professional improvisers. We then field tested the model with two live performances for public audiences as part of a live theatre festival in Europe. We surveyed audience members after each performance as well as performers to evaluate how well the AI performed in its role as narrator. Audiences and performers responded positively to AI narration and indicated preference for AI narration over AI characters within a scene. Performers also responded positively to AI narration and expressed enthusiasm for the creative and meaningful novel narrative directions introduced to the scenes. Our findings support improvisational theatre as a useful test-bed to explore how different language models can collaborate with humans in a variety of social contexts.