Abstract:Source localization is the inverse problem of graph information dissemination and has broad practical applications. However, the inherent intricacy and uncertainty in information dissemination pose significant challenges, and the ill-posed nature of the source localization problem further exacerbates these challenges. Recently, deep generative models, particularly diffusion models inspired by classical non-equilibrium thermodynamics, have made significant progress. While diffusion models have proven to be powerful in solving inverse problems and producing high-quality reconstructions, applying them directly to the source localization is infeasible for two reasons. Firstly, it is impossible to calculate the posterior disseminated results on a large-scale network for iterative denoising sampling, which would incur enormous computational costs. Secondly, in the existing methods for this field, the training data itself are ill-posed (many-to-one); thus simply transferring the diffusion model would only lead to local optima. To address these challenges, we propose a two-stage optimization framework, the source localization denoising diffusion model (SL-Diff). In the coarse stage, we devise the source proximity degrees as the supervised signals to generate coarse-grained source predictions. This aims to efficiently initialize the next stage, significantly reducing its convergence time and calibrating the convergence process. Furthermore, the introduction of cascade temporal information in this training method transforms the many-to-one mapping relationship into a one-to-one relationship, perfectly addressing the ill-posed problem. In the fine stage, we design a diffusion model for the graph inverse problem that can quantify the uncertainty in the dissemination. The proposed SL-Diff yields excellent prediction results within a reasonable sampling time at extensive experiments.
Abstract:Introducing prior auxiliary information from the knowledge graph (KG) to assist the user-item graph can improve the comprehensive performance of the recommender system. Many recent studies show that the ensemble properties of hyperbolic spaces fit the scale-free and hierarchical characteristics exhibited in the above two types of graphs well. However, existing hyperbolic methods ignore the consideration of equivariance, thus they cannot generalize symmetric features under given transformations, which seriously limits the capability of the model. Moreover, they cannot balance preserving the heterogeneity and mining the high-order entity information to users across two graphs. To fill these gaps, we propose a rigorously Lorentz group equivariant knowledge-enhanced collaborative filtering model (LECF). Innovatively, we jointly update the attribute embeddings (containing the high-order entity signals from the KG) and hyperbolic embeddings (the distance between hyperbolic embeddings reveals the recommendation tendency) by the LECF layer with Lorentz Equivariant Transformation. Moreover, we propose Hyperbolic Sparse Attention Mechanism to sample the most informative neighbor nodes. Lorentz equivariance is strictly maintained throughout the entire model, and enforcing equivariance is proven necessary experimentally. Extensive experiments on three real-world benchmarks demonstrate that LECF remarkably outperforms state-of-the-art methods.
Abstract:Origin-Destination (OD) matrices record directional flow data between pairs of OD regions. The intricate spatiotemporal dependency in the matrices makes the OD matrix forecasting (ODMF) problem not only intractable but also non-trivial. However, most of the related methods are designed for very short sequence time series forecasting in specific application scenarios, which cannot meet the requirements of the variation in scenarios and forecasting length of practical applications. To address these issues, we propose a Transformer-like model named ODformer, with two salient characteristics: (i) the novel OD Attention mechanism, which captures special spatial dependencies between OD pairs of the same origin (destination), greatly improves the ability of the model to predict cross-application scenarios after combining with 2D-GCN that captures spatial dependencies between OD regions. (ii) a PeriodSparse Self-attention that effectively forecasts long sequence OD matrix series while adapting to the periodic differences in different scenarios. Generous experiments in three application backgrounds (i.e., transportation traffic, IP backbone network traffic, crowd flow) show our method outperforms the state-of-the-art methods.