Abstract:This study proposes a dynamic rule data mining algorithm based on an improved Transformer architecture, aiming to improve the accuracy and efficiency of rule mining in a dynamic data environment. With the increase in data volume and complexity, traditional data mining methods are difficult to cope with dynamic data with strong temporal and variable characteristics, so new algorithms are needed to capture the temporal regularity in the data. By improving the Transformer architecture, and introducing a dynamic weight adjustment mechanism and a temporal dependency module, we enable the model to adapt to data changes and mine more accurate rules. Experimental results show that compared with traditional rule mining algorithms, the improved Transformer model has achieved significant improvements in rule mining accuracy, coverage, and stability. The contribution of each module in the algorithm performance is further verified by ablation experiments, proving the importance of temporal dependency and dynamic weight adjustment mechanisms in improving the model effect. In addition, although the improved model has certain challenges in computational efficiency, its advantages in accuracy and coverage enable it to perform well in processing complex dynamic data. Future research will focus on optimizing computational efficiency and combining more deep learning technologies to expand the application scope of the algorithm, especially in practical applications in the fields of finance, medical care, and intelligent recommendation.
Abstract:This paper studies a Markov network model for unbalanced data, aiming to solve the problems of classification bias and insufficient minority class recognition ability of traditional machine learning models in environments with uneven class distribution. By constructing joint probability distribution and conditional dependency, the model can achieve global modeling and reasoning optimization of sample categories. The study introduced marginal probability estimation and weighted loss optimization strategies, combined with regularization constraints and structured reasoning methods, effectively improving the generalization ability and robustness of the model. In the experimental stage, a real credit card fraud detection dataset was selected and compared with models such as logistic regression, support vector machine, random forest and XGBoost. The experimental results show that the Markov network performs well in indicators such as weighted accuracy, F1 score, and AUC-ROC, significantly outperforming traditional classification models, demonstrating its strong decision-making ability and applicability in unbalanced data scenarios. Future research can focus on efficient model training, structural optimization, and deep learning integration in large-scale unbalanced data environments and promote its wide application in practical applications such as financial risk control, medical diagnosis, and intelligent monitoring.