Abstract:Today's fitness bands and smartwatches typically track heart rates (HR) using optical sensors. Large behavioral studies such as the UK Biobank use activity trackers without such optical sensors and thus lack HR data, which could reveal valuable health trends for the wider population. In this paper, we present the first dataset of wrist-worn accelerometer recordings and electrocardiogram references in uncontrolled at-home settings to investigate the recent promise of IMU-only HR estimation via ballistocardiograms. Our recordings are from 42 patients during the night, totaling 310 hours. We also introduce a frequency-based method to extract HR via curve tracing from IMU recordings while rejecting motion artifacts. Using our dataset, we analyze existing baselines and show that our method achieves a mean absolute error of 0.88 bpm -- 76% better than previous approaches. Our results validate the potential of IMU-only HR estimation as a key indicator of cardiac activity in existing longitudinal studies to discover novel health insights. Our dataset, Nightbeat-DB, and our source code are available on GitHub: https://github.com/eth-siplab/Nightbeat.
Abstract:Recent work has shown that a person's sympathetic arousal can be estimated from facial videos alone using basic signal processing. This opens up new possibilities in the field of telehealth and stress management, providing a non-invasive method to measure stress only using a regular RGB camera. In this paper, we present SympCam, a new 3D convolutional architecture tailored to the task of remote sympathetic arousal prediction. Our model incorporates a temporal attention module (TAM) to enhance the temporal coherence of our sequential data processing capabilities. The predictions from our method improve accuracy metrics of sympathetic arousal in prior work by 48% to a mean correlation of 0.77. We additionally compare our method with common remote photoplethysmography (rPPG) networks and show that they alone cannot accurately predict sympathetic arousal "out-of-the-box". Furthermore, we show that the sympathetic arousal predicted by our method allows detecting physical stress with a balanced accuracy of 90% - an improvement of 61% compared to the rPPG method commonly used in related work, demonstrating the limitations of using rPPG alone. Finally, we contribute a dataset designed explicitly for the task of remote sympathetic arousal prediction. Our dataset contains synchronized face and hand videos of 20 participants from two cameras synchronized with electrodermal activity (EDA) and photoplethysmography (PPG) measurements. We will make this dataset available to the community and use it to evaluate the methods in this paper. To the best of our knowledge, this is the first dataset available to other researchers designed for remote sympathetic arousal prediction.
Abstract:Remote camera measurement of the blood volume pulse via photoplethysmography (rPPG) is a compelling technology for scalable, low-cost, and accessible assessment of cardiovascular information. Neural networks currently provide the state-of-the-art for this task and supervised training or fine-tuning is an important step in creating these models. However, most current models are trained on facial videos using contact PPG measurements from the fingertip as targets/ labels. One of the reasons for this is that few public datasets to date have incorporated contact PPG measurements from the face. Yet there is copious evidence that the PPG signals at different sites on the body have very different morphological features. Is training a facial video rPPG model using contact measurements from another site on the body suboptimal? Using a recently released unique dataset with synchronized contact PPG and video measurements from both the hand and face, we can provide precise and quantitative answers to this question. We obtain up to 40 % lower mean squared errors between the waveforms of the predicted and the ground truth PPG signals using state-of-the-art neural models when using PPG signals from the forehead compared to using PPG signals from the fingertip. We also show qualitatively that the neural models learn to predict the morphology of the ground truth PPG signal better when trained on the forehead PPG signals. However, while models trained from the forehead PPG produce a more faithful waveform, models trained from a finger PPG do still learn the dominant frequency (i.e., the heart rate) well.