Abstract:Wireless federated learning (WFL) suffers from heterogeneity prevailing in the data distributions, computing powers, and channel conditions of participating devices. This paper presents a new Federated Learning with Adjusted leaRning ratE (FLARE) framework to mitigate the impact of the heterogeneity. The key idea is to allow the participating devices to adjust their individual learning rates and local training iterations, adapting to their instantaneous computing powers. The convergence upper bound of FLARE is established rigorously under a general setting with non-convex models in the presence of non-i.i.d. datasets and imbalanced computing powers. By minimizing the upper bound, we further optimize the scheduling of FLARE to exploit the channel heterogeneity. A nested problem structure is revealed to facilitate iteratively allocating the bandwidth with binary search and selecting devices with a new greedy method. A linear problem structure is also identified and a low-complexity linear programming scheduling policy is designed when training models have large Lipschitz constants. Experiments demonstrate that FLARE consistently outperforms the baselines in test accuracy, and converges much faster with the proposed scheduling policy.
Abstract:The development of applications based on artificial intelligence and implemented over wireless networks is increasingly rapidly and is expected to grow dramatically in the future. The resulting demand for the aggregation of large amounts of data has caused serious communication bottlenecks in wireless networks and particularly at the network edge. Over-the-air federated learning (OTA-FL), leveraging the superposition feature of multi-access channels (MACs), enables users at the network edge to share spectrum resources and achieves efficient and low-latency global model aggregation. This paper provides a holistic review of progress in OTA-FL and points to potential future research directions. Specifically, we classify OTA-FL from the perspective of system settings, including single-antenna OTA-FL, multi-antenna OTA-FL, and OTA-FL with the aid of the emerging reconfigurable intelligent surface (RIS) technology, and the contributions of existing works in these areas are summarized. Moreover, we discuss the trust, security and privacy aspects of OTA-FL, and highlight concerns arising from security and privacy. Finally, challenges and potential research directions are discussed to promote the future development of OTA-FL in terms of improving system performance, reliability, and trustworthiness. Specifical challenges to be addressed include model distortion under channel fading, the ineffective OTA aggregation of local models trained on substantially unbalanced data, and the limited accessibility and verifiability of individual local models.