Abstract:Trends on short-video platforms evolve at a rapid pace, with new content issues emerging every day that fall outside the coverage of existing annotation policies. However, traditional human-driven discovery of emerging issues is too slow, which leads to delayed updates of annotation policies and poses a major challenge for effective content governance. In this work, we propose an automatic issue discovery method based on multimodal LLM agents. Our approach automatically recalls short videos containing potential new issues and applies a two-stage clustering strategy to group them, with each cluster corresponding to a newly discovered issue. The agent then generates updated annotation policies from these clusters, thereby extending coverage to these emerging issues. Our agent has been deployed in the real system. Both offline and online experiments demonstrate that this agent-based method significantly improves the effectiveness of emerging-issue discovery (with an F1 score improvement of over 20%) and enhances the performance of subsequent issue governance (reducing the view count of problematic videos by approximately 15%). More importantly, compared to manual issue discovery, it greatly reduces time costs and substantially accelerates the iteration of annotation policies.
Abstract:Negative feedback signals are crucial to guardrail content recommendations and improve user experience. When these signals are effectively integrated into recommendation systems, they play a vital role in preventing the promotion of harmful or undesirable content, thereby contributing to a healthier online environment. However, the challenges associated with negative signals are noteworthy. Due to the limited visibility of options for users to express negative feedback, these signals are often sparse compared to positive signals. This imbalance can lead to a skewed understanding of user preferences, resulting in recommendations that prioritize short-term engagement over long-term satisfaction. Moreover, an over-reliance on positive signals can create a filter bubble, where users are continuously exposed to content that aligns with their immediate preferences but may not be beneficial in the long run. This scenario can ultimately lead to user attrition as audiences become disillusioned with the quality of the content provided. Additionally, existing user signals frequently fail to meet specific customized requirements, such as understanding the underlying reasons for a user's likes or dislikes regarding a video. This lack of granularity hinders our ability to tailor content recommendations effectively, as we cannot identify the particular attributes of content that resonate with individual users.