Abstract:While Text-to-Image (T2I) diffusion models excel at generating visually appealing images of individual instances, they struggle to accurately position and control the features generation of multiple instances. The Layout-to-Image (L2I) task was introduced to address the positioning challenges by incorporating bounding boxes as spatial control signals, but it still falls short in generating precise instance features. In response, we propose the Instance Feature Generation (IFG) task, which aims to ensure both positional accuracy and feature fidelity in generated instances. To address the IFG task, we introduce the Instance Feature Adapter (IFAdapter). The IFAdapter enhances feature depiction by incorporating additional appearance tokens and utilizing an Instance Semantic Map to align instance-level features with spatial locations. The IFAdapter guides the diffusion process as a plug-and-play module, making it adaptable to various community models. For evaluation, we contribute an IFG benchmark and develop a verification pipeline to objectively compare models' abilities to generate instances with accurate positioning and features. Experimental results demonstrate that IFAdapter outperforms other models in both quantitative and qualitative evaluations.
Abstract:The multi-document summarization task requires the designed summarizer to generate a short text that covers the important information of original documents and satisfies content diversity. This paper proposes a multi-document summarization approach based on hierarchical clustering of documents. It utilizes the constructed class tree of documents to extract both the sentences reflecting the commonality of all documents and the sentences reflecting the specificity of some subclasses of these documents for generating a summary, so as to satisfy the coverage and diversity requirements of multi-document summarization. Comparative experiments with different variant approaches on DUC'2002-2004 datasets prove the effectiveness of mining both the commonality and specificity of documents for multi-document summarization. Experiments on DUC'2004 and Multi-News datasets show that our approach achieves competitive performance compared to the state-of-the-art unsupervised and supervised approaches.