Abstract:In this paper, we investigate the influence of claims in analyst reports and earnings calls on financial market returns, considering them as significant quarterly events for publicly traded companies. To facilitate a comprehensive analysis, we construct a new financial dataset for the claim detection task in the financial domain. We benchmark various language models on this dataset and propose a novel weak-supervision model that incorporates the knowledge of subject matter experts (SMEs) in the aggregation function, outperforming existing approaches. Furthermore, we demonstrate the practical utility of our proposed model by constructing a novel measure ``optimism". Furthermore, we observed the dependence of earnings surprise and return on our optimism measure. Our dataset, models, and code will be made publicly (under CC BY 4.0 license) available on GitHub and Hugging Face.
Abstract:Ring artifacts in X-ray micro-CT images are one of the primary causes of concern in their accurate visual interpretation and quantitative analysis. The geometry of X-ray micro-CT scanners is similar to the medical CT machines, except the sample is rotated with a stationary source and detector. The ring artifacts are caused by a defect or non-linear responses in detector pixels during the MicroCT data acquisition. Artifacts in MicroCT images can often be so severe that the images are no longer useful for further analysis. Therefore, it is essential to comprehend the causes of artifacts and potential solutions to maximize image quality. This article presents a convolution neural network (CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder and decoder units with skip connections for removal of ring artifacts. The proposed architecture has been evaluated using the Structural Similarity Index Measure (SSIM) and Mean Squared Error (MSE). Additionally, the results are compared with conventional filter-based non-ML techniques and are found to be better than the latter.
Abstract:The electron density is a key parameter to characterize any plasma. Most of the plasma applications and research in the area of low-temperature plasmas (LTPs) is based on plasma density and plasma temperature. The conventional methods for electron density measurements offer axial and radial profiles for any given linear LTP device. These methods have major disadvantages of operational range (not very wide), cumbersome instrumentation, and complicated data analysis procedures. To address such practical concerns, the article proposes a novel machine learning (ML) assisted microwave-plasma interaction based strategy which is capable enough to determine the electron density profile within the plasma. The electric field pattern due to microwave scattering is measured to estimate the density profile. The proof of concept is tested for a simulated training data set comprising a low-temperature, unmagnetized, collisional plasma. Different types of Gaussian-shaped density profiles, in the range $10^{16}-10^{19}m^{-3}$, addressing a range of experimental configurations have been considered in our study. The results obtained show promising performance in estimating the 2D radial profile of the density for the given linear plasma device. The performance of the proposed deep learning based approach has been evaluated using three metrics- SSIM, RMSLE and MAPE. The favourable performance affirms the potential of the proposed ML based approach in plasma diagnostics.
Abstract:This paper presents a convolutional neural network (CNN)-based deep learning model, inspired from UNet with series of encoder and decoder units with skip connections, for the simulation of microwave-plasma interaction. The microwave propagation characteristics in complex plasma medium pertaining to transmission, absorption and reflection primarily depends on the ratio of electromagnetic (EM) wave frequency and electron plasma frequency, and the plasma density profile. The scattering of a plane EM wave with fixed frequency (1 GHz) and amplitude incident on a plasma medium with different gaussian density profiles (in the range of $1\times 10^{17}-1\times 10^{22}{m^{-3}}$) have been considered. The training data associated with microwave-plasma interaction has been generated using 2D-FDTD (Finite Difference Time Domain) based simulations. The trained deep learning model is then used to reproduce the scattered electric field values for the 1GHz incident microwave on different plasma profiles with error margin of less than 2\%. We propose a complete deep learning (DL) based pipeline to train, validate and evaluate the model. We compare the results of the network, using various metrics like SSIM index, average percent error and mean square error, with the physical data obtained from well-established FDTD based EM solvers. To the best of our knowledge, this is the first effort towards exploring a DL based approach for the simulation of complex microwave plasma interaction. The deep learning technique proposed in this work is significantly fast as compared to the existing computational techniques, and can be used as a new, prospective and alternative computational approach for investigating microwave-plasma interaction in a real time scenario.
Abstract:Annual ranking of higher educational institutes (HEIs) is a global phenomena and past research shows that they have significant impact on higher education landscape. In spite of criticisms regarding the goals, methodologies and outcomes of such ranking systems, previous studies reveal that most of the universities pay close attention to ranking results and look forward to improving their ranks. Generally, each ranking framework uses its own set of parameters and the data for individual metrics are condensed into a single final score for determining the rank thereby making it a complex multivariate problem. Maintaining a good rank and ascending in the rankings is a difficult task because it requires considerable resources, efforts and accurate planning. In this work, we show how exploratory data analysis (EDA) using correlation heatmaps and box plots can aid in understanding the broad trends in the ranking data, however it is challenging to make institutional decisions for rank improvements completely based on EDA. We present a novel idea of classifying the rankings data using Decision Tree (DT) based algorithms and retrieve decision paths for rank improvement using data visualization techniques. Using Laplace correction to the probability estimate, we quantify the amount of certainty attached with different decision paths obtained from interpretable DT models . The proposed methodology can aid HEIs to quantitatively asses the scope of improvement, adumbrate a fine-grained long-term action plan and prepare a suitable road-map.
Abstract:Electron-neutral scattering cross sections are fundamental quantities in simulations of low temperature plasmas used for many technological applications today. From these microscopic cross sections, several macro-scale quantities (called "swarm" parameters) can be calculated. However, measurements as well as theoretical calculations of cross sections are challenging. Since the 1960s researchers have attempted to solve the inverse swarm problem of obtaining cross sections from swarm data; but the solutions are not necessarily unique. To address this issues, we examine the use of deep learning models which are trained using the previous determinations of elastic momentum transfer, ionization and excitation cross sections for different gases available on the LXCat website and their corresponding swarm parameters calculated using the BOLSIG+ solver for the numerical solution of the Boltzmann equation for electrons in weakly ionized gases. We implement artificial neural network (ANN), convolutional neural network (CNN) and densely connected convolutional network (DenseNet) for this investigation. To the best of our knowledge, there is no study exploring the use of CNN and DenseNet for the inverse swarm problem. We test the validity of predictions by all these trained networks for a broad range of gas species and we deduce that DenseNet effectively extracts both long and short term features from the swarm data and hence, it predicts cross sections with significantly higher accuracy compared to ANN. Further, we apply Monte Carlo dropout as Bayesian approximation to estimate the probability distribution of the cross sections to determine all plausible solutions of this inverse problem.