Abstract:Ring artifacts in X-ray micro-CT images are one of the primary causes of concern in their accurate visual interpretation and quantitative analysis. The geometry of X-ray micro-CT scanners is similar to the medical CT machines, except the sample is rotated with a stationary source and detector. The ring artifacts are caused by a defect or non-linear responses in detector pixels during the MicroCT data acquisition. Artifacts in MicroCT images can often be so severe that the images are no longer useful for further analysis. Therefore, it is essential to comprehend the causes of artifacts and potential solutions to maximize image quality. This article presents a convolution neural network (CNN)-based Deep Learning (DL) model inspired by UNet with a series of encoder and decoder units with skip connections for removal of ring artifacts. The proposed architecture has been evaluated using the Structural Similarity Index Measure (SSIM) and Mean Squared Error (MSE). Additionally, the results are compared with conventional filter-based non-ML techniques and are found to be better than the latter.