Abstract:Self-awareness is a critical factor in social human-human interaction and, hence, in social HCI interaction. Increasing self-awareness through mirrors or video recordings is common in face-to-face trainings, since it influences antecedents of self-awareness like explicit identification and implicit affective identification (affinity). However, increasing self-awareness has been scarcely examined in virtual trainings with virtual avatars, which allow for adjusting the similarity, e.g. to avoid negative effects of self-consciousness. Automatic visual similarity in avatars is an open issue related to high costs. It is important to understand which features need to be manipulated and which degree of similarity is necessary for self-awareness to leverage the added value of using avatars for self-awareness. This article examines the relationship between avatar visual similarity and increasing self-awareness in virtual training environments. We define visual similarity based on perceptually important facial features for human-human identification and develop a theory-based methodology to systematically manipulate visual similarity of virtual avatars and support self-awareness. Three personalized versions of virtual avatars with varying degrees of visual similarity to participants were created (weak, medium and strong facial features manipulation). In a within-subject study (N=33), we tested effects of degree of similarity on perceived similarity, explicit identification and implicit affective identification (affinity). Results show significant differences between the weak similarity manipulation, and both the strong manipulation and the random avatar for all three antecedents of self-awareness. An increasing degree of avatar visual similarity influences antecedents of self-awareness in virtual environments.
Abstract:Large language models, in particular generative pre-trained transformers (GPTs), show impressive results on a wide variety of language-related tasks. In this paper, we explore ChatGPT's zero-shot ability to perform affective computing tasks using prompting alone. We show that ChatGPT a) performs meaningful sentiment analysis in the Valence, Arousal and Dominance dimensions, b) has meaningful emotion representations in terms of emotion categories and these affective dimensions, and c) can perform basic appraisal-based emotion elicitation of situations based on a prompt-based computational implementation of the OCC appraisal model. These findings are highly relevant: First, they show that the ability to solve complex affect processing tasks emerges from language-based token prediction trained on extensive data sets. Second, they show the potential of large language models for simulating, processing and analyzing human emotions, which has important implications for various applications such as sentiment analysis, socially interactive agents, and social robotics.