Abstract:AI applications pose increasing demands on performance, so it is not surprising that the era of client-side distributed software is becoming important. On top of many AI applications already using mobile hardware, and even browsers for computationally demanding AI applications, we are already witnessing the emergence of client-side (federated) machine learning algorithms, driven by the interests of large corporations and startups alike. Apart from mathematical and algorithmic concerns, this trend especially demands new levels of computational efficiency from client environments. Consequently, this paper deals with the question of state-of-the-art performance by presenting a comparison study between native code and different browser-based implementations: JavaScript, ASM.js as well as WebAssembly on a representative mix of algorithms. Our results show that current efforts in runtime optimization push the boundaries well towards (and even beyond) native binary performance. We analyze the results obtained and speculate on the reasons behind some surprises, rounding the paper off by outlining future possibilities as well as some of our own research efforts.
Abstract:Digital pathology is not only one of the most promising fields of diagnostic medicine, but at the same time a hot topic for fundamental research. Digital pathology is not just the transfer of histopathological slides into digital representations. The combination of different data sources (images, patient records, and *omics data) together with current advances in artificial intelligence/machine learning enable to make novel information accessible and quantifiable to a human expert, which is not yet available and not exploited in current medical settings. The grand goal is to reach a level of usable intelligence to understand the data in the context of an application task, thereby making machine decisions transparent, interpretable and explainable. The foundation of such an "augmented pathologist" needs an integrated approach: While machine learning algorithms require many thousands of training examples, a human expert is often confronted with only a few data points. Interestingly, humans can learn from such few examples and are able to instantly interpret complex patterns. Consequently, the grand goal is to combine the possibilities of artificial intelligence with human intelligence and to find a well-suited balance between them to enable what neither of them could do on their own. This can raise the quality of education, diagnosis, prognosis and prediction of cancer and other diseases. In this paper we describe some (incomplete) research issues which we believe should be addressed in an integrated and concerted effort for paving the way towards the augmented pathologist.