Abstract:Probabilistic Circuits (PCs) are prominent tractable probabilistic models, allowing for a range of exact inferences. This paper focuses on the main algorithm for training PCs, LearnSPN, a gold standard due to its efficiency, performance, and ease of use, in particular for tabular data. We show that LearnSPN is a greedy likelihood maximizer under mild assumptions. While inferences in PCs may use the entire circuit structure for processing queries, LearnSPN applies a hard method for learning them, propagating at each sum node a data point through one and only one of the children/edges as in a hard clustering process. We propose a new learning procedure named SoftLearn, that induces a PC using a soft clustering process. We investigate the effect of this learning-inference compatibility in PCs. Our experiments show that SoftLearn outperforms LearnSPN in many situations, yielding better likelihoods and arguably better samples. We also analyze comparable tractable models to highlight the differences between soft/hard learning and model querying.
Abstract:This work addresses integrating probabilistic propositional logic constraints into the distribution encoded by a probabilistic circuit (PC). PCs are a class of tractable models that allow efficient computations (such as conditional and marginal probabilities) while achieving state-of-the-art performance in some domains. The proposed approach takes both a PC and constraints as inputs, and outputs a new PC that satisfies the constraints. This is done efficiently via convex optimization without the need to retrain the entire model. Empirical evaluations indicate that the combination of constraints and PCs can have multiple use cases, including the improvement of model performance under scarce or incomplete data, as well as the enforcement of machine learning fairness measures into the model without compromising model fitness. We believe that these ideas will open possibilities for multiple other applications involving the combination of logics and deep probabilistic models.