Abstract:Since the release of ChatGPT, numerous studies have highlighted the remarkable performance of ChatGPT, which often rivals or even surpasses human capabilities in various tasks and domains. However, this paper presents a contrasting perspective by demonstrating an instance where human performance excels in typical tasks suited for ChatGPT, specifically in the domain of computer programming. We utilize the IEEExtreme Challenge competition as a benchmark, a prestigious, annual international programming contest encompassing a wide range of problems with different complexities. To conduct a thorough evaluation, we selected and executed a diverse set of 102 challenges, drawn from five distinct IEEExtreme editions, using three major programming languages: Python, Java, and C++. Our empirical analysis provides evidence that contrary to popular belief, human programmers maintain a competitive edge over ChatGPT in certain aspects of problem-solving within the programming context. In fact, we found that the average score obtained by ChatGPT on the set of IEEExtreme programming problems is 3.9 to 5.8 times lower than the average human score, depending on the programming language. This paper elaborates on these findings, offering critical insights into the limitations and potential areas of improvement for AI-based language models like ChatGPT.
Abstract:The application of Artificial intelligence for teaching and learning in the academic sphere is a trending subject of interest in the computing education. ChatGPT, as an AI-based tool, provides various advantages, such as heightened student involvement, cooperation, accessibility and availability. This paper addresses the prospects and obstacles associated with utilizing ChatGPT as a tool for learning and assessment in undergraduate Computer Science curriculum in particular to teaching and learning fundamental programming courses. Students having completed the course work for a Data Structures and Algorithms (a sophomore level course) participated in this study. Two groups of students were given programming challenges to solve within a short period of time. The control group (group A) had access to text books and notes of programming courses, however no Internet access was provided. Group B students were given access to ChatGPT and were encouraged to use it to help solve the programming challenges. The challenge was conducted in a computer lab environment using PC2 environment. Each team of students address the problem by writing executable code that satisfies certain number of test cases. Student teams were scored based on their performance in terms of number of successful passed testcases. Results show that students using ChatGPT had an advantage in terms of earned scores, however there were inconsistencies and inaccuracies in the submitted code consequently affecting the overall performance. After a thorough analysis, the paper's findings indicate that incorporating AI in higher education brings about various opportunities and challenges.
Abstract:The Symposium on Data Mining and Applications (SDMA 2014) is aimed to gather researchers and application developers from a wide range of data mining related areas such as statistics, computational intelligence, pattern recognition, databases, Big Data Mining and visualization. SDMA is organized by MEGDAM to advance the state of the art in data mining research field and its various real world applications. The symposium will provide opportunities for technical collaboration among data mining and machine learning researchers around the Saudi Arabia, GCC countries and Middle-East region. Acceptance will be based primarily on originality, significance and quality of contribution.