Abstract:Description logic Knowledge and Action Bases (KAB) are a mechanism for providing both a semantically rich representation of the information on the domain of interest in terms of a description logic knowledge base and actions to change such information over time, possibly introducing new objects. We resort to a variant of DL-Lite where the unique name assumption is not enforced and where equality between objects may be asserted and inferred. Actions are specified as sets of conditional effects, where conditions are based on epistemic queries over the knowledge base (TBox and ABox), and effects are expressed in terms of new ABoxes. In this setting, we address verification of temporal properties expressed in a variant of first-order mu-calculus with quantification across states. Notably, we show decidability of verification, under a suitable restriction inspired by the notion of weak acyclicity in data exchange.
Abstract:Artifact-Centric systems have emerged in the last years as a suitable framework to model business-relevant entities, by combining their static and dynamic aspects. In particular, the Guard-Stage-Milestone (GSM) approach has been recently proposed to model artifacts and their lifecycle in a declarative way. In this paper, we enhance GSM with a Semantic Layer, constituted by a full-fledged OWL 2 QL ontology linked to the artifact information models through mapping specifications. The ontology provides a conceptual view of the domain under study, and allows one to understand the evolution of the artifact system at a higher level of abstraction. In this setting, we present a technique to specify temporal properties expressed over the Semantic Layer, and verify them according to the evolution in the underlying GSM model. This technique has been implemented in a tool that exploits state-of-the-art ontology-based data access technologies to manipulate the temporal properties according to the ontology and the mappings, and that relies on the GSMC model checker for verification.