Abstract:This paper explores the effectiveness of using large language models (LLMs) for personalized movie recommendations from users' perspectives in an online field experiment. Our study involves a combination of between-subject prompt and historic consumption assessments, along with within-subject recommendation scenario evaluations. By examining conversation and survey response data from 160 active users, we find that LLMs offer strong recommendation explainability but lack overall personalization, diversity, and user trust. Our results also indicate that different personalized prompting techniques do not significantly affect user-perceived recommendation quality, but the number of movies a user has watched plays a more significant role. Furthermore, LLMs show a greater ability to recommend lesser-known or niche movies. Through qualitative analysis, we identify key conversational patterns linked to positive and negative user interaction experiences and conclude that providing personal context and examples is crucial for obtaining high-quality recommendations from LLMs.
Abstract:Deep learning-based (DL) models in recommender systems (RecSys) have gained significant recognition for their remarkable accuracy in predicting user preferences. However, their performance often lacks a comprehensive evaluation from a human-centric perspective, which encompasses various dimensions beyond simple interest matching. In this work, we have developed a robust human-centric evaluation framework that incorporates seven diverse metrics to assess the quality of recommendations generated by five recent open-sourced DL models. Our evaluation datasets consist of both offline benchmark data and personalized online recommendation feedback collected from 445 real users. We find that (1) different DL models have different pros and cons in the multi-dimensional metrics that we test with; (2) users generally want a combination of accuracy with at least one another human values in the recommendation; (3) the degree of combination of different values needs to be carefully experimented to user preferred level.