Abstract:Neural vocoders often struggle with aliasing in latent feature spaces, caused by time-domain nonlinear operations and resampling layers. Aliasing folds high-frequency components into the low-frequency range, making aliased and original frequency components indistinguishable and introducing two practical issues. First, aliasing complicates the waveform generation process, as the subsequent layers must address these aliasing effects, increasing the computational complexity. Second, it limits extrapolation performance, particularly in handling high fundamental frequencies, which degrades the perceptual quality of generated speech waveforms. This paper demonstrates that 1) time-domain nonlinear operations inevitably introduce aliasing but provide a strong inductive bias for harmonic generation, and 2) time-frequency-domain processing can achieve aliasing-free waveform synthesis but lacks the inductive bias for effective harmonic generation. Building on this insight, we propose Wavehax, an aliasing-free neural WAVEform generator that integrates 2D convolution and a HArmonic prior for reliable Complex Spectrogram estimation. Experimental results show that Wavehax achieves speech quality comparable to existing high-fidelity neural vocoders and exhibits exceptional robustness in scenarios requiring high fundamental frequency extrapolation, where aliasing effects become typically severe. Moreover, Wavehax requires less than 5% of the multiply-accumulate operations and model parameters compared to HiFi-GAN V1, while achieving over four times faster CPU inference speed.
Abstract:To achieve a flexible recommendation and retrieval system, it is desirable to calculate music similarity by focusing on multiple partial elements of musical pieces and allowing the users to select the element they want to focus on. A previous study proposed using multiple individual networks for calculating music similarity based on each instrumental sound, but it is impractical to use each signal as a query in search systems. Using separated instrumental sounds alternatively resulted in less accuracy due to artifacts. In this paper, we propose a method to compute similarities focusing on each instrumental sound with a single network that takes mixed sounds as input instead of individual instrumental sounds. Specifically, we design a single similarity embedding space with disentangled dimensions for each instrument, extracted by Conditional Similarity Networks, which is trained by the triplet loss using masks. Experimental results have shown that (1) the proposed method can obtain more accurate feature representation than using individual networks using separated sounds as input, (2) each sub-embedding space can hold the characteristics of the corresponding instrument, and (3) the selection of similar musical pieces focusing on each instrumental sound by the proposed method can obtain human consent, especially in drums and guitar.