Abstract:Contextual bandits algorithms have become essential in real-world user interaction problems in recent years. However, these algorithms rely on context as attribute value representation, which makes them unfeasible for real-world domains like social networks are inherently relational. We propose Relational Boosted Bandits(RB2), acontextual bandits algorithm for relational domains based on (relational) boosted trees. RB2 enables us to learn interpretable and explainable models due to the more descriptive nature of the relational representation. We empirically demonstrate the effectiveness and interpretability of RB2 on tasks such as link prediction, relational classification, and recommendations.
Abstract:Generative Adversarial Networks (GAN) have shown great promise in tasks like synthetic image generation, image inpainting, style transfer, and anomaly detection. However, generating discrete data is a challenge. This work presents an adversarial training based correlated discrete data (CDD) generation model. It also details an approach for conditional CDD generation. The results of our approach are presented over two datasets; job-seeking candidates skill set (private dataset) and MNIST (public dataset). From quantitative and qualitative analysis of these results, we show that our model performs better as it leverages inherent correlation in the data, than an existing model that overlooks correlation.