Abstract:In this work, we address the challenge of evaluating large language models (LLMs) on the short answer matching task for Latvian and Lithuanian languages. We introduce novel datasets consisting of 502 Latvian and 690 Lithuanian question-answer pairs. For each question-answer pair, we generated matched and non-matched answers using a set of alteration rules specifically designed to introduce small but meaningful changes in the text. These generated answers serve as test cases to assess the ability of LLMs to detect subtle differences in matching of the original answers. A subset of the datasets was manually verified for quality and accuracy. Our results show that while larger LLMs, such as QWEN2.5 72b and LLaMa3.1 70b, demonstrate near-perfect performance in distinguishing matched and non-matched answers, smaller models show more variance. For instance, LLaMa3.1 8b and EuroLLM 9b benefited from few-shot examples, while Mistral Nemo 12b underperformed on detection of subtle text alteration, particularly in Lithuanian, even with additional examples. QWEN2.5 7b and Mistral 7b were able to obtain a strong and comparable performance to the larger 70b models in zero and few shot experiments. Moreover, the performance of Mistral 7b was weaker in few shot experiments.
Abstract:While the evaluation of multimodal English-centric models is an active area of research with numerous benchmarks, there is a profound lack of benchmarks or evaluation suites for low- and mid-resource languages. We introduce ZNO-Vision, a comprehensive multimodal Ukrainian-centric benchmark derived from standardized university entrance examination (ZNO). The benchmark consists of over 4,300 expert-crafted questions spanning 12 academic disciplines, including mathematics, physics, chemistry, and humanities. We evaluated the performance of both open-source models and API providers, finding that only a handful of models performed above baseline. Alongside the new benchmark, we performed the first evaluation study of multimodal text generation for the Ukrainian language: we measured caption generation quality on the Multi30K-UK dataset, translated the VQA benchmark into Ukrainian, and measured performance degradation relative to original English versions. Lastly, we tested a few models from a cultural perspective on knowledge of national cuisine. We believe our work will advance multimodal generation capabilities for the Ukrainian language and our approach could be useful for other low-resource languages.
Abstract:In this paper, we propose a model-agnostic cost-effective approach to developing bilingual base large language models (LLMs) to support English and any target language. The method includes vocabulary expansion, initialization of new embeddings, model training and evaluation. We performed our experiments with three languages, each using a non-Latin script - Ukrainian, Arabic, and Georgian. Our approach demonstrates improved language performance while reducing computational costs. It mitigates the disproportionate penalization of underrepresented languages, promoting fairness and minimizing adverse phenomena such as code-switching and broken grammar. Additionally, we introduce new metrics to evaluate language quality, revealing that vocabulary size significantly impacts the quality of generated text.
Abstract:In the rapidly advancing field of AI and NLP, generative large language models (LLMs) stand at the forefront of innovation, showcasing unparalleled abilities in text understanding and generation. However, the limited representation of low-resource languages like Ukrainian poses a notable challenge, restricting the reach and relevance of this technology. Our paper addresses this by fine-tuning the open-source Gemma and Mistral LLMs with Ukrainian datasets, aiming to improve their linguistic proficiency and benchmarking them against other existing models capable of processing Ukrainian language. This endeavor not only aims to mitigate language bias in technology but also promotes inclusivity in the digital realm. Our transparent and reproducible approach encourages further NLP research and development. Additionally, we present the Ukrainian Knowledge and Instruction Dataset (UKID) to aid future efforts in language model fine-tuning. Our research not only advances the field of NLP but also highlights the importance of linguistic diversity in AI, which is crucial for cultural preservation, education, and expanding AI's global utility. Ultimately, we advocate for a future where technology is inclusive, enabling AI to communicate effectively across all languages, especially those currently underrepresented.