Abstract:Explainable Deep Learning has gained significant attention in the field of artificial intelligence (AI), particularly in domains such as medical imaging, where accurate and interpretable machine learning models are crucial for effective diagnosis and treatment planning. Grad-CAM is a baseline that highlights the most critical regions of an image used in a deep learning model's decision-making process, increasing interpretability and trust in the results. It is applied in many computer vision (CV) tasks such as classification and explanation. This study explores the principles of Explainable Deep Learning and its relevance to medical imaging, discusses various explainability techniques and their limitations, and examines medical imaging applications of Grad-CAM. The findings highlight the potential of Explainable Deep Learning and Grad-CAM in improving the accuracy and interpretability of deep learning models in medical imaging. The code is available in (will be available).
Abstract:Streaming classification methods assume the number of input features is fixed and always received. But in many real-world scenarios demand is some input features are reliable while others are unreliable or inconsistent. In this paper, we propose a novel deep learning-based model called Auxiliary Network (Aux-Net), which is scalable and agile. It employs a weighted ensemble of classifiers to give a final outcome. The Aux-Net model is based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online setting using single pass learning. Aux-Net is a foundational work towards scalable neural network model for a dynamic complex environment requiring ad hoc or inconsistent input data. The efficacy of Aux-Net is shown on public dataset.
Abstract:In many real-world scientific problems, generating ground truth (GT) for supervised learning is almost impossible. The causes include limitations imposed by scientific instrument, physical phenomenon itself, or the complexity of modeling. Performing artificial intelligence (AI) tasks such as segmentation, tracking, and analytics of small sub-cellular structures such as mitochondria in microscopy videos of living cells is a prime example. The 3D blurring function of microscope, digital resolution from pixel size, optical resolution due to the character of light, noise characteristics, and complex 3D deformable shapes of mitochondria, all contribute to making this problem GT hard. Manual segmentation of 100s of mitochondria across 1000s of frames and then across many such videos is not only herculean but also physically inaccurate because of the instrument and phenomena imposed limitations. Unsupervised learning produces less than optimal results and accuracy is important if inferences relevant to therapy are to be derived. In order to solve this unsurmountable problem, we bring modeling and deep learning to a nexus. We show that accurate physics based modeling of microscopy data including all its limitations can be the solution for generating simulated training datasets for supervised learning. We show here that our simulation-supervised segmentation approach is a great enabler for studying mitochondrial states and behaviour in heart muscle cells, where mitochondria have a significant role to play in the health of the cells. We report unprecedented mean IoU score of 91% for binary segmentation (19% better than the best performing unsupervised approach) of mitochondria in actual microscopy videos of living cells. We further demonstrate the possibility of performing multi-class classification, tracking, and morphology associated analytics at the scale of individual mitochondrion.
Abstract:The recent worldwide outbreak of the novel corona-virus (COVID-19) opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the uncertain nature. Here, we propose a shallow Long short-term memory (LSTM) based neural network to predict the risk category of a country. We have used a Bayesian optimization framework to optimized and automatically design country-specific networks. We have combined the trend data and weather data together for the prediction. The results show that the proposed pipeline outperforms against state-of-the-art methods for 170 countries data and can be a useful tool for such risk categorization. The tool can be used to predict long-duration outbreak of such an epidemic such that we can take preventive steps earlier.