Abstract:The effectiveness of denoising-driven regularization for image reconstruction has been widely recognized. Two prominent algorithms in this area are Plug-and-Play ($\texttt{PnP}$) and Regularization-by-Denoising ($\texttt{RED}$). We consider two specific algorithms $\texttt{PnP-FISTA}$ and $\texttt{RED-APG}$, where regularization is performed by replacing the proximal operator in the $\texttt{FISTA}$ algorithm with a powerful denoiser. The iterate convergence of $\texttt{FISTA}$ is known to be challenging with no universal guarantees. Yet, we show that for linear inverse problems and a class of linear denoisers, global linear convergence of the iterates of $\texttt{PnP-FISTA}$ and $\texttt{RED-APG}$ can be established through simple spectral analysis.
Abstract:In the Plug-and-Play (PnP) method, a denoiser is used as a regularizer within classical proximal algorithms for image reconstruction. It is known that a broad class of linear denoisers can be expressed as the proximal operator of a convex regularizer. Consequently, the associated PnP algorithm can be linked to a convex optimization problem $\mathcal{P}$. For such a linear denoiser, we prove that $\mathcal{P}$ exhibits strong convexity for linear inverse problems. Specifically, we show that the strong convexity of $\mathcal{P}$ can be used to certify objective and iterative convergence of any PnP algorithm derived from classical proximal methods.