Abstract:Optical wireless communication (OWC) is a promising technology anticipated to play a key role in the next-generation network of networks. To this end, this paper details the potential of OWC, as a complementary technology to traditional radio frequency communications, in enhancing networking capabilities beyond conventional terrestrial networks. Several usage scenarios and the current state of development are presented. Furthermore, a summary of existing challenges and opportunities are provided. Emerging technologies aimed at further enhancing future OWC capabilities are introduced. Additionally, value-added OWC-based technologies that leverage the unique properties of light are discussed, including applications such as positioning and gesture recognition. The paper concludes with the reflection that OWC provides unique functionalities that can play a crucial role in building convergent and resilient future network of networks.
Abstract:In this letter, we consider linear precoding for downlink massive multi-user (MU) multiple-input multiple-output (MIMO) systems. We propose the novel successively-regularized zero forcing (SRZF) precoding, which exploits successive null spaces of the MIMO channels of the users, along with regularization, to control the inter-user interference and to enhance performance and robustness to imperfect channel state information (CSI) at the base station (BS). We compare the weighted sum rate of the proposed SRZF precoding with those of block diagonalization and conventional and regularized zero forcing precoding for fixed and locally-optimal power allocation strategies as well as for perfect and imperfect CSI via computer simulations. Our simulation results reveal that for both underloaded and critically-loaded systems and perfect and imperfect CSI at the BS, the proposed SRZF precoding significantly outperforms the considered baseline schemes, making it an attractive option for downlink massive MU-MIMO systems.
Abstract:In this paper, we consider the precoder design for downlink multiple-input multiple-output (MIMO) rate-splitting multiple access (RSMA) systems. The proposed scheme with simultaneous diagonalization (SD) decomposes the MIMO channel matrices of the users into scalar channels via higher-order generalized singular value decomposition for the common message (CM) and block diagonalization (BD) for the private messages, thereby enabling low-complexity element-by-element successive interference cancellation (SIC) and decoding at the receivers. Furthermore, the proposed SD MIMO-RSMA overcomes a critical limitation in RSMA systems, whereby the achievable rate of the CM is restricted by the users with weak effective MIMO channel for the CM, by excluding a subset of users from decoding the CM. We formulate a non-convex weighted sum rate (WSR) optimization problem for SD MIMO-RSMA and solve it via successive convex approximation to obtain a locally optimal solution. Our simulation results reveal that, for both perfect and imperfect CSI, the proposed SD MIMO-RSMA with user exclusion outperforms baseline MIMO-RSMA schemes and linear BD precoding.
Abstract:In this paper, we consider the precoder design for an underloaded or critically loaded downlink multi-user multiple-input multiple-output (MIMO) communication system. We propose novel precoding and decoding schemes which enhance system performance based on rate splitting at the transmitter and single-stage successive interference cancellation at the receivers. The proposed successive null-space (SNS) precoding utilizes linear combinations of the null-space basis vectors of the successively augmented MIMO channel matrices of the users as precoding vectors to adjust the inter-user-interference experienced by the receivers. We formulate a non-convex weighted sum rate optimization problem for the precoding vectors and the associated power allocation for the proposed SNS-based MIMO-rate-splitting multiple access (RSMA) scheme. We obtain a suboptimal solution for this problem via successive convex approximation. Moreover, we study the robustness of the proposed precoding scheme to imperfect channel state information (CSI) at the base station via derivative-based sensitivity analysis. Our analysis and simulation results reveal the enhanced performance and robustness of the proposed SNS-based MIMO-RSMA scheme over several baseline multi-user MIMO schemes, especially for imperfect CSI.
Abstract:In this paper, we consider the precoder design for an under-loaded or critically loaded downlink multi-user multiple-input multiple-output (MU-MIMO) communication system. We propose novel precoding and decoding schemes which enhance system performance based on rate splitting at the transmitter and single-stage successive interference cancellation at the receivers. The proposed successive null-space (SNS) precoding scheme utilizes linear combinations of the null-space basis vectors of the successively augmented MIMO channel matrices of the users as precoding vectors to adjust the inter-user-interference experienced by the receivers. We formulate a non-convex weighted sum rate (WSR) optimization problem, and solve it via successive convex approximation to obtain a suboptimal solution for the precoding vectors and the associated power allocation. Our simulation results reveal that the proposed SNS precoders outperform block diagonalization based linear and rate splitting designs, and in many cases, have a relatively small gap to the maximum sum rate achieved by dirty paper coding.