Abstract:Voice Assistants (VAs) are popular for simple tasks, but users are often hesitant to use them for complex activities like online shopping. We explored whether the vocal characteristics like the VA's vocal tone, can make VAs perceived as more attractive and trustworthy to users for complex tasks. Our findings show that the tone of the VA voice significantly impacts its perceived attractiveness and trustworthiness. Participants in our experiment were more likely to be attracted to VAs with positive or neutral tones and ultimately trusted the VAs they found more attractive. We conclude that VA's perceived trustworthiness can be enhanced through thoughtful voice design, incorporating a variety of vocal tones.
Abstract:In contemporary society, voice-controlled devices, such as smartphones and home assistants, have become pervasive due to their advanced capabilities and functionality. The always-on nature of their microphones offers users the convenience of readily accessing these devices. However, recent research and events have revealed that such voice-controlled devices are prone to various forms of malicious attacks, hence making it a growing concern for both users and researchers to safeguard against such attacks. Despite the numerous studies that have investigated adversarial attacks and privacy preservation for images, a conclusive study of this nature has not been conducted for the audio domain. Therefore, this paper aims to examine existing approaches for privacy-preserving and privacy-attacking strategies for audio and speech. To achieve this goal, we classify the attack and defense scenarios into several categories and provide detailed analysis of each approach. We also interpret the dissimilarities between the various approaches, highlight their contributions, and examine their limitations. Our investigation reveals that voice-controlled devices based on neural networks are inherently susceptible to specific types of attacks. Although it is possible to enhance the robustness of such models to certain forms of attack, more sophisticated approaches are required to comprehensively safeguard user privacy.
Abstract:As smartphones become more pervasive, they are increasingly targeted by malware. At the same time, each new generation of smartphone features increasingly powerful onboard sensor suites. A new strain of sensor malware has been developing that leverages these sensors to steal information from the physical environment (e.g., researchers have recently demonstrated how malware can listen for spoken credit card numbers through the microphone, or feel keystroke vibrations using the accelerometer). Yet the possibilities of what malware can see through a camera have been understudied. This paper introduces a novel visual malware called PlaceRaider, which allows remote attackers to engage in remote reconnaissance and what we call virtual theft. Through completely opportunistic use of the camera on the phone and other sensors, PlaceRaider constructs rich, three dimensional models of indoor environments. Remote burglars can thus download the physical space, study the environment carefully, and steal virtual objects from the environment (such as financial documents, information on computer monitors, and personally identifiable information). Through two human subject studies we demonstrate the effectiveness of using mobile devices as powerful surveillance and virtual theft platforms, and we suggest several possible defenses against visual malware.