Abstract:Detecting small, densely distributed objects is a significant challenge: small objects often contain less distinctive information compared to larger ones, and finer-grained precision of bounding box boundaries are required. In this paper, we propose two techniques for addressing this problem. First, we estimate the likelihood that each pixel belongs to an object boundary rather than predicting coordinates of bounding boxes (as YOLO, Faster-RCNN and SSD do), by proposing a new architecture called Filter-Amplifier Networks (FANs). Second, we introduce a technique called Loss Boosting (LB) which attempts to soften the loss imbalance problem on each image. We test our algorithm on the problem of detecting electrical components on a new, realistic, diverse dataset of printed circuit boards (PCBs), as well as the problem of detecting vehicles in the Vehicle Detection in Aerial Imagery (VEDAI) dataset. Experiments show that our method works significantly better than current state-of-the-art algorithms with respect to accuracy, recall and average IoU.
Abstract:As smartphones become more pervasive, they are increasingly targeted by malware. At the same time, each new generation of smartphone features increasingly powerful onboard sensor suites. A new strain of sensor malware has been developing that leverages these sensors to steal information from the physical environment (e.g., researchers have recently demonstrated how malware can listen for spoken credit card numbers through the microphone, or feel keystroke vibrations using the accelerometer). Yet the possibilities of what malware can see through a camera have been understudied. This paper introduces a novel visual malware called PlaceRaider, which allows remote attackers to engage in remote reconnaissance and what we call virtual theft. Through completely opportunistic use of the camera on the phone and other sensors, PlaceRaider constructs rich, three dimensional models of indoor environments. Remote burglars can thus download the physical space, study the environment carefully, and steal virtual objects from the environment (such as financial documents, information on computer monitors, and personally identifiable information). Through two human subject studies we demonstrate the effectiveness of using mobile devices as powerful surveillance and virtual theft platforms, and we suggest several possible defenses against visual malware.