Abstract:Existing low-light image enhancement methods are difficult to fit the complex nonlinear relationship between normal and low-light images due to uneven illumination and noise effects. The recently proposed Kolmogorov-Arnold networks (KANs) feature spline-based convolutional layers and learnable activation functions, which can effectively capture nonlinear dependencies. In this paper, we design a KAN-Block based on KANs and innovatively apply it to low-light image enhancement. This method effectively alleviates the limitations of current methods constrained by linear network structures and lack of interpretability, further demonstrating the potential of KANs in low-level vision tasks. Given the poor perception of current low-light image enhancement methods and the stochastic nature of the inverse diffusion process, we further introduce frequency-domain perception for visually oriented enhancement. Extensive experiments demonstrate the competitive performance of our method on benchmark datasets. The code will be available at: https://github.com/AXNing/KSID}{https://github.com/AXNing/KSID.
Abstract:Although synthetic data can alleviate acquisition challenges in image dehazing tasks, it also introduces the problem of domain bias when dealing with small-scale data. This paper proposes a novel dual-branch collaborative unpaired dehazing model (DCM-dehaze) to address this issue. The proposed method consists of two collaborative branches: dehazing and contour constraints. Specifically, we design a dual depthwise separable convolutional module (DDSCM) to enhance the information expressiveness of deeper features and the correlation to shallow features. In addition, we construct a bidirectional contour function to optimize the edge features of the image to enhance the clarity and fidelity of the image details. Furthermore, we present feature enhancers via a residual dense architecture to eliminate redundant features of the dehazing process and further alleviate the domain deviation problem. Extensive experiments on benchmark datasets show that our method reaches the state-of-the-art. This project code will be available at \url{https://github.com/Fan-pixel/DCM-dehaze.
Abstract:Although current text detection algorithms demonstrate effectiveness in general scenarios, their performance declines when confronted with artistic-style text featuring complex structures. This paper proposes a method that utilizes Criss-Cross Attention and residual dense block to address the incomplete and misdiagnosis of artistic-style text detection by current algorithms. Specifically, our method mainly consists of a feature extraction backbone, a feature enhancement network, a multi-scale feature fusion module, and a boundary discrimination module. The feature enhancement network significantly enhances the model's perceptual capabilities in complex environments by fusing horizontal and vertical contextual information, allowing it to capture detailed features overlooked in artistic-style text. We incorporate residual dense block into the Feature Pyramid Network to suppress the effect of background noise during feature fusion. Aiming to omit the complex post-processing, we explore a boundary discrimination module that guides the correct generation of boundary proposals. Furthermore, given that movie poster titles often use stylized art fonts, we collected a Movie-Poster dataset to address the scarcity of artistic-style text data. Extensive experiments demonstrate that our proposed method performs superiorly on the Movie-Poster dataset and produces excellent results on multiple benchmark datasets. The code and the Movie-Poster dataset will be available at: https://github.com/biedaxiaohua/Artistic-style-text-detection