Abstract:In this paper we propose a novel approach to model compression termed Architecture Compression. Instead of operating on the weight or filter space of the network like classical model compression methods, our approach operates on the architecture space. A 1-D CNN encoder-decoder is trained to learn a mapping from discrete architecture space to a continuous embedding and back. Additionally, this embedding is jointly trained to regress accuracy and parameter count in order to incorporate information about the architecture's effectiveness on the dataset. During the compression phase, we first encode the network and then perform gradient descent in continuous space to optimize a compression objective function that maximizes accuracy and minimizes parameter count. The final continuous feature is then mapped to a discrete architecture using the decoder. We demonstrate the merits of this approach on visual recognition tasks such as CIFAR-10, CIFAR-100, Fashion-MNIST and SVHN and achieve a greater than 20x compression on CIFAR-10.
Abstract:While bigger and deeper neural network architectures continue to advance the state-of-the-art for many computer vision tasks, real-world adoption of these networks is impeded by hardware and speed constraints. Conventional model compression methods attempt to address this problem by modifying the architecture manually or using pre-defined heuristics. Since the space of all reduced architectures is very large, modifying the architecture of a deep neural network in this way is a difficult task. In this paper, we tackle this issue by introducing a principled method for learning reduced network architectures in a data-driven way using reinforcement learning. Our approach takes a larger `teacher' network as input and outputs a compressed `student' network derived from the `teacher' network. In the first stage of our method, a recurrent policy network aggressively removes layers from the large `teacher' model. In the second stage, another recurrent policy network carefully reduces the size of each remaining layer. The resulting network is then evaluated to obtain a reward -- a score based on the accuracy and compression of the network. Our approach uses this reward signal with policy gradients to train the policies to find a locally optimal student network. Our experiments show that we can achieve compression rates of more than 10x for models such as ResNet-34 while maintaining similar performance to the input `teacher' network. We also present a valuable transfer learning result which shows that policies which are pre-trained on smaller `teacher' networks can be used to rapidly speed up training on larger `teacher' networks.