Centre for Research and Technology Hellas, Information Technologies Institute
Abstract:The unique cost, flexibility, speed, and efficiency of modern UAVs make them an attractive choice in many applications in contemporary society. This, however, causes an ever-increasing number of reported malicious or accidental incidents, rendering the need for the development of UAV detection and classification mechanisms essential. We propose a methodology for developing a system that fuses already processed multi-sensor data into a new Deep Neural Network to increase its classification accuracy towards UAV detection. The DNN model fuses high-level features extracted from individual object detection and classification models associated with thermal, optronic, and radar data. Additionally, emphasis is given to the model's Convolutional Neural Network (CNN) based architecture that combines the features of the three sensor modalities by stacking the extracted image features of the thermal and optronic sensor achieving higher classification accuracy than each sensor alone.
Abstract:Reconfigurable Intelligent Surfaces (RIS) constitute a promising technology that could fulfill the extreme performance and capacity needs of the upcoming 6G wireless networks, by offering software-defined control over wireless propagation phenomena. Despite the existence of many theoretical models describing various aspects of RIS from the signal processing perspective (e.g., channel fading models), there is no open platform to simulate and study their actual physical-layer behavior, especially in the multi-RIS case. In this paper, we develop an open simulation platform, aimed at modeling the physical-layer electromagnetic coupling and propagation between RIS pairs. We present the platform by initially designing a basic unit cell, and then proceeding to progressively model and simulate multiple and larger RISs. The platform can be used for producing verifiable stochastic models for wireless communication in multi-RIS deployments, such as vehicle-to-everything (V2X) communications in autonomous vehicles and cybersecurity schemes, while its code is freely available to the public.