Abstract:We study an approximate controllability problem for the continuity equation and its application to constructing transport maps with normalizing flows. Specifically, we construct time-dependent controls $\theta=(w, a, b)$ in the vector field $w(a^\top x + b)_+$ to approximately transport a known base density $\rho_{\mathrm{B}}$ to a target density $\rho_*$. The approximation error is measured in relative entropy, and $\theta$ are constructed piecewise constant, with bounds on the number of switches being provided. Our main result relies on an assumption on the relative tail decay of $\rho_*$ and $\rho_{\mathrm{B}}$, and provides hints on characterizing the reachable space of the continuity equation in relative entropy.
Abstract:Neural ordinary differential equations (neural ODEs) have emerged as a natural tool for supervised learning from a control perspective, yet a complete understanding of their optimal architecture remains elusive. In this work, we examine the interplay between their width $p$ and number of layer transitions $L$ (effectively the depth $L+1$). Specifically, we assess the model expressivity in terms of its capacity to interpolate either a finite dataset $D$ comprising $N$ pairs of points or two probability measures in $\mathbb{R}^d$ within a Wasserstein error margin $\varepsilon>0$. Our findings reveal a balancing trade-off between $p$ and $L$, with $L$ scaling as $O(1+N/p)$ for dataset interpolation, and $L=O\left(1+(p\varepsilon^d)^{-1}\right)$ for measure interpolation. In the autonomous case, where $L=0$, a separate study is required, which we undertake focusing on dataset interpolation. We address the relaxed problem of $\varepsilon$-approximate controllability and establish an error decay of $\varepsilon\sim O(\log(p)p^{-1/d})$. This decay rate is a consequence of applying a universal approximation theorem to a custom-built Lipschitz vector field that interpolates $D$. In the high-dimensional setting, we further demonstrate that $p=O(N)$ neurons are likely sufficient to achieve exact control.
Abstract:Classification of $N$ points becomes a simultaneous control problem when viewed through the lens of neural ordinary differential equations (neural ODEs), which represent the time-continuous limit of residual networks. For the narrow model, with one neuron per hidden layer, it has been shown that the task can be achieved using $O(N)$ neurons. In this study, we focus on estimating the number of neurons required for efficient cluster-based classification, particularly in the worst-case scenario where points are independently and uniformly distributed in $[0,1]^d$. Our analysis provides a novel method for quantifying the probability of requiring fewer than $O(N)$ neurons, emphasizing the asymptotic behavior as both $d$ and $N$ increase. Additionally, under the sole assumption that the data are in general position, we propose a new constructive algorithm that simultaneously classifies clusters of $d$ points from any initial configuration, effectively reducing the maximal complexity to $O(N/d)$ neurons.