Abstract:We demonstrate QirK, a system for answering natural language questions on Knowledge Graphs (KG). QirK can answer structurally complex questions that are still beyond the reach of emerging Large Language Models (LLMs). It does so using a unique combination of database technology, LLMs, and semantic search over vector embeddings. The glue for these components is an intermediate representation (IR). The input question is mapped to IR using LLMs, which is then repaired into a valid relational database query with the aid of a semantic search on vector embeddings. This allows a practical synthesis of LLM capabilities and KG reliability. A short video demonstrating QirK is available at https://youtu.be/6c81BLmOZ0U.
Abstract:We explore the application of foundation models to data discovery and exploration tasks. Foundation models are large language models (LLMs) that show promising performance on a range of diverse tasks unrelated to their training. We show that these models are highly applicable to the data discovery and data exploration domain. When carefully used, they have superior capability on three representative tasks: table-class detection, column-type annotation and join-column prediction. On all three tasks, we show that a foundation-model-based approach outperforms the task-specific models and so the state of the art. Further, our approach often surpasses human-expert task performance. This suggests a future direction in which disparate data management tasks can be unified under foundation models.
Abstract:SHAP explanations are a popular feature-attribution mechanism for explainable AI. They use game-theoretic notions to measure the influence of individual features on the prediction of a machine learning model. Despite a lot of recent interest from both academia and industry, it is not known whether SHAP explanations of common machine learning models can be computed efficiently. In this paper, we establish the complexity of computing the SHAP explanation in three important settings. First, we consider fully-factorized data distributions, and show that the complexity of computing the SHAP explanation is the same as the complexity of computing the expected value of the model. This fully-factorized setting is often used to simplify the SHAP computation, yet our results show that the computation can be intractable for commonly used models such as logistic regression. Going beyond fully-factorized distributions, we show that computing SHAP explanations is already intractable for a very simple setting: computing SHAP explanations of trivial classifiers over naive Bayes distributions. Finally, we show that even computing SHAP over the empirical distribution is #P-hard.