Abstract:This article introduces a new method to improve the dependability of millimeter-wave (mmWave) and terahertz (THz) network services in dynamic outdoor environments. In these settings, line-of-sight (LoS) connections are easily interrupted by moving obstacles like humans and vehicles. The proposed approach, coined as Radar-aided Dynamic blockage Recognition (RaDaR), leverages radar measurements and federated learning (FL) to train a dual-output neural network (NN) model capable of simultaneously predicting blockage status and time. This enables determining the optimal point for proactive handover (PHO) or beam switching, thereby reducing the latency introduced by 5G new radio procedures and ensuring high quality of experience (QoE). The framework employs radar sensors to monitor and track objects movement, generating range-angle and range-velocity maps that are useful for scene analysis and predictions. Moreover, FL provides additional benefits such as privacy protection, scalability, and knowledge sharing. The framework is assessed using an extensive real-world dataset comprising mmWave channel information and radar data. The evaluation results show that RaDaR substantially enhances network reliability, achieving an average success rate of 94% for PHO compared to existing reactive HO procedures that lack proactive blockage prediction. Additionally, RaDaR maintains a superior QoE by ensuring sustained high throughput levels and minimising PHO latency.
Abstract:Smart energy performance monitoring and optimisation at the supplier and consumer levels is essential to realising smart cities. In order to implement a more sustainable energy management plan, it is crucial to conduct a better energy forecast. The next-generation smart meters can also be used to measure, record, and report energy consumption data, which can be used to train machine learning (ML) models for predicting energy needs. However, sharing fine-grained energy data and performing centralised learning may compromise users' privacy and leave them vulnerable to several attacks. This study addresses this issue by utilising federated learning (FL), an emerging technique that performs ML model training at the user level, where data resides. We introduce FedTrees, a new, lightweight FL framework that benefits from the outstanding features of ensemble learning. Furthermore, we developed a delta-based early stopping algorithm to monitor FL training and stop it when it does not need to continue. The simulation results demonstrate that FedTrees outperforms the most popular federated averaging (FedAvg) framework and the baseline Persistence model for providing accurate energy forecasting patterns while taking only 2% of the computation time and 13% of the communication rounds compared to FedAvg, saving considerable amounts of computation and communication resources.
Abstract:The upsurge in wireless devices and real-time service demands force the move to a higher frequency spectrum. Millimetre-wave (mmWave) and terahertz (THz) bands combined with the beamforming technology offer significant performance enhancements for ultra-dense networks (UDNs). Unfortunately, shrinking cell coverage and severe penetration loss experienced at higher spectrum render mobility management a critical issue in UDNs, especially optimizing beam blockages and frequent handover (HO). Mobility management challenges have become prevalent in city centres and urban areas. To address this, we propose a novel mechanism driven by exploiting wireless signals and on-road surveillance systems to intelligently predict possible blockages in advance and perform timely HO. This paper employs computer vision (CV) to determine obstacles and users' location and speed. In addition, this study introduces a new HO event, called block event {BLK}, defined by the presence of a blocking object and a user moving towards the blocked area. Moreover, the multivariate regression technique predicts the remaining time until the user reaches the blocked area, hence determining best HO decision. Compared to typical wireless networks without blockage prediction, simulation results show that our BLK detection and PHO algorithm achieves 40\% improvement in maintaining user connectivity and the required quality of experience (QoE).
Abstract:The unprecedented surge of data volume in wireless networks empowered with artificial intelligence (AI) opens up new horizons for providing ubiquitous data-driven intelligent services. Traditional cloud-centric machine learning (ML)-based services are implemented by collecting datasets and training models centrally. However, this conventional training technique encompasses two challenges: (i) high communication and energy cost due to increased data communication, (ii) threatened data privacy by allowing untrusted parties to utilise this information. Recently, in light of these limitations, a new emerging technique, coined as federated learning (FL), arose to bring ML to the edge of wireless networks. FL can extract the benefits of data silos by training a global model in a distributed manner, orchestrated by the FL server. FL exploits both decentralised datasets and computing resources of participating clients to develop a generalised ML model without compromising data privacy. In this article, we introduce a comprehensive survey of the fundamentals and enabling technologies of FL. Moreover, an extensive study is presented detailing various applications of FL in wireless networks and highlighting their challenges and limitations. The efficacy of FL is further explored with emerging prospective beyond fifth generation (B5G) and sixth generation (6G) communication systems. The purpose of this survey is to provide an overview of the state-of-the-art of FL applications in key wireless technologies that will serve as a foundation to establish a firm understanding of the topic. Lastly, we offer a road forward for future research directions.