Abstract:Reverberation may severely degrade the quality of speech signals recorded using microphones in a room. For compact microphone arrays, the choice of the reference microphone for multi-microphone dereverberation typically does not have a large influence on the dereverberation performance. In contrast, when the microphones are spatially distributed, the choice of the reference microphone may significantly contribute to the dereverberation performance. In this paper, we propose to perform reference microphone selection for the weighted prediction error (WPE) dereverberation algorithm based on the normalized $\ell_p$-norm of the dereverberated output signal. Experimental results for different source positions in a reverberant laboratory show that the proposed method yields a better dereverberation performance than reference microphone selection based on the early-to-late reverberation ratio or signal power.
Abstract:Reverberation can severely degrade the quality of speech signals recorded using microphones in an enclosure. In acoustic sensor networks with spatially distributed microphones, a similar dereverberation performance may be achieved using only a subset of all available microphones. Using the popular convex relaxation method, in this paper we propose to perform microphone subset selection for the weighted prediction error (WPE) multi-channel dereverberation algorithm by introducing a group sparsity penalty on the prediction filter coefficients. The resulting problem is shown to be solved efficiently using the accelerated proximal gradient algorithm. Experimental evaluation using measured impulse responses shows that the performance of the proposed method is close to the optimal performance obtained by exhaustive search, both for frequency-dependent as well as frequency-independent microphone subset selection. Furthermore, the performance using only a few microphones for frequency-independent microphone subset selection is only marginally worse than using all available microphones.
Abstract:In the last decades several multi-microphone speech dereverberation algorithms have been proposed, among which the weighted prediction error (WPE) algorithm. In the WPE algorithm, a prediction delay is required to reduce the correlation between the prediction signals and the direct component in the reference microphone signal. In compact arrays with closely-spaced microphones, the prediction delay is often chosen microphone-independent. In acoustic sensor networks with spatially distributed microphones, large time-differences-of-arrival (TDOAs) of the speech source between the reference microphone and other microphones typically occur. Hence, when using a microphone-independent prediction delay the reference and prediction signals may still be significantly correlated, leading to distortion in the dereverberated output signal. In order to decorrelate the signals, in this paper we propose to apply TDOA compensation with respect to the reference microphone, resulting in microphone-dependent prediction delays for the WPE algorithm. We consider both optimal TDOA compensation using crossband filtering in the short-time Fourier transform domain as well as band-to-band and integer delay approximations. Simulation results for different reverberation times using oracle as well as estimated TDOAs clearly show the benefit of using microphone-dependent prediction delays.