Reverberation can severely degrade the quality of speech signals recorded using microphones in an enclosure. In acoustic sensor networks with spatially distributed microphones, a similar dereverberation performance may be achieved using only a subset of all available microphones. Using the popular convex relaxation method, in this paper we propose to perform microphone subset selection for the weighted prediction error (WPE) multi-channel dereverberation algorithm by introducing a group sparsity penalty on the prediction filter coefficients. The resulting problem is shown to be solved efficiently using the accelerated proximal gradient algorithm. Experimental evaluation using measured impulse responses shows that the performance of the proposed method is close to the optimal performance obtained by exhaustive search, both for frequency-dependent as well as frequency-independent microphone subset selection. Furthermore, the performance using only a few microphones for frequency-independent microphone subset selection is only marginally worse than using all available microphones.