Abstract:While remarkable progress has been made on supervised skeleton-based action recognition, the challenge of zero-shot recognition remains relatively unexplored. In this paper, we argue that relying solely on aligning label-level semantics and global skeleton features is insufficient to effectively transfer locally consistent visual knowledge from seen to unseen classes. To address this limitation, we introduce Part-aware Unified Representation between Language and Skeleton (PURLS) to explore visual-semantic alignment at both local and global scales. PURLS introduces a new prompting module and a novel partitioning module to generate aligned textual and visual representations across different levels. The former leverages a pre-trained GPT-3 to infer refined descriptions of the global and local (body-part-based and temporal-interval-based) movements from the original action labels. The latter employs an adaptive sampling strategy to group visual features from all body joint movements that are semantically relevant to a given description. Our approach is evaluated on various skeleton/language backbones and three large-scale datasets, i.e., NTU-RGB+D 60, NTU-RGB+D 120, and a newly curated dataset Kinetics-skeleton 200. The results showcase the universality and superior performance of PURLS, surpassing prior skeleton-based solutions and standard baselines from other domains. The source codes can be accessed at https://github.com/azzh1/PURLS.
Abstract:Human action recognition is a crucial task in computer vision systems. However, in real-world scenarios, human actions often fall outside the distribution of training data, requiring a model to both recognize in-distribution (ID) actions and reject out-of-distribution (OOD) ones. Despite its importance, there has been limited research on OOD detection in human actions. Existing works on OOD detection mainly focus on image data with RGB structure, and many methods are post-hoc in nature. While these methods are convenient and computationally efficient, they often lack sufficient accuracy and fail to consider the presence of OOD samples. To address these challenges, we propose a novel end-to-end skeleton-based model called Action-OOD, specifically designed for OOD human action detection. Unlike some existing approaches that may require prior knowledge of existing OOD data distribution, our model solely utilizes in-distribution (ID) data during the training stage, effectively mitigating the overconfidence issue prevalent in OOD detection. We introduce an attention-based feature fusion block, which enhances the model's capability to recognize unknown classes while preserving classification accuracy for known classes. Further, we present a novel energy-based loss function and successfully integrate it with the traditional cross-entropy loss to maximize the separation of data distributions between ID and OOD. Through extensive experiments conducted on NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-400 datasets, we demonstrate the superior performance of our proposed approach compared to state-of-the-art methods. Our findings underscore the effectiveness of classic OOD detection techniques in the context of skeleton-based action recognition tasks, offering promising avenues for future research in this field. Code will be available at: https://github.com/YilliaJing/Action-OOD.git.
Abstract:Skeleton-based action recognition receives increasing attention because the skeleton representations reduce the amount of training data by eliminating visual information irrelevant to actions. To further improve the sample efficiency, meta-learning-based one-shot learning solutions were developed for skeleton-based action recognition. These methods find the nearest neighbor according to the similarity between instance-level global average embedding. However, such measurement holds unstable representativity due to inadequate generalized learning on local invariant and noisy features, while intuitively, more fine-grained recognition usually relies on determining key local body movements. To address this limitation, we present the Adaptive Local-Component-aware Graph Convolutional Network, which replaces the comparison metric with a focused sum of similarity measurements on aligned local embedding of action-critical spatial/temporal segments. Comprehensive one-shot experiments on the public benchmark of NTU-RGB+D 120 indicate that our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.