Abstract:Terrain classification is an important problem for mobile robots operating in extreme environments as it can aid downstream tasks such as autonomous navigation and planning. While RGB cameras are widely used for terrain identification, vision-based methods can suffer due to poor lighting conditions and occlusions. In this paper, we propose the novel use of Ground Penetrating Radar (GPR) for terrain characterization for mobile robot platforms. Our approach leverages machine learning for surface terrain classification from GPR data. We collect a new dataset consisting of four different terrain types, and present qualitative and quantitative results. Our results demonstrate that classification networks can learn terrain categories from GPR signals. Additionally, we integrate our GPR-based classification approach into a multimodal semantic mapping framework to demonstrate a practical use case of GPR for surface terrain classification on mobile robots. Overall, this work extends the usability of GPR sensors deployed on robots to enable terrain classification in addition to GPR's existing scientific use cases.
Abstract:Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 24 distinct shipwreck sites totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/.
Abstract:Autonomous terrain classification is an important problem in planetary navigation, whether the goal is to identify scientific sites of interest or to traverse treacherous areas safely. Past Martian rovers have relied on human operators to manually identify a navigable path from transmitted imagery. Our goals on Mars in the next few decades will eventually require rovers that can autonomously move farther, faster, and through more dangerous landscapes--demonstrating a need for improved terrain classification for traversability. Autonomous navigation through extreme environments will enable the search for water on the Moon and Mars as well as preparations for human habitats. Advancements in machine learning techniques have demonstrated potential to improve terrain classification capabilities for ground vehicles on Earth. However, classification results for space applications are limited by the availability of training data suitable for supervised learning methods. This paper contributes an open source automatic data processing pipeline that uses camera geometry to co-locate Curiosity and Perseverance Mastcam image products with Mars overhead maps via ray projection over a terrain model. In future work, this automated data processing pipeline will be leveraged for development of machine learning methods for terrain classification.