Abstract:Assessment of proficiency of the learner is an essential part of Intelligent Tutoring Systems (ITS). We use Item Response Theory (IRT) in computer-aided language learning for assessment of student ability in two contexts: in test sessions, and in exercises during practice sessions. Exhaustive testing across a wide range of skills can provide a detailed picture of proficiency, but may be undesirable for a number of reasons. Therefore, we first aim to replace exhaustive tests with efficient but accurate adaptive tests. We use learner data collected from exhaustive tests under imperfect conditions, to train an IRT model to guide adaptive tests. Simulations and experiments with real learner data confirm that this approach is efficient and accurate. Second, we explore whether we can accurately estimate learner ability directly from the context of practice with exercises, without testing. We transform learner data collected from exercise sessions into a form that can be used for IRT modeling. This is done by linking the exercises to {\em linguistic constructs}; the constructs are then treated as "items" within IRT. We present results from large-scale studies with thousands of learners. Using teacher assessments of student ability as "ground truth," we compare the estimates obtained from tests vs. those from exercises. The experiments confirm that the IRT models can produce accurate ability estimation based on exercises.
Abstract:We investigate how pretrained language models (PLM) encode the grammatical category of verbal aspect in Russian. Encoding of aspect in transformer LMs has not been studied previously in any language. A particular challenge is posed by "alternative contexts": where either the perfective or the imperfective aspect is suitable grammatically and semantically. We perform probing using BERT and RoBERTa on alternative and non-alternative contexts. First, we assess the models' performance on aspect prediction, via behavioral probing. Next, we examine the models' performance when their contextual representations are substituted with counterfactual representations, via causal probing. These counterfactuals alter the value of the "boundedness" feature--a semantic feature, which characterizes the action in the context. Experiments show that BERT and RoBERTa do encode aspect--mostly in their final layers. The counterfactual interventions affect perfective and imperfective in opposite ways, which is consistent with grammar: perfective is positively affected by adding the meaning of boundedness, and vice versa. The practical implications of our probing results are that fine-tuning only the last layers of BERT on predicting aspect is faster and more effective than fine-tuning the whole model. The model has high predictive uncertainty about aspect in alternative contexts, which tend to lack explicit hints about the boundedness of the described action.
Abstract:This paper investigates the application of GPT-3.5 for Grammatical Error Correction (GEC) in multiple languages in several settings: zero-shot GEC, fine-tuning for GEC, and using GPT-3.5 to re-rank correction hypotheses generated by other GEC models. In the zero-shot setting, we conduct automatic evaluations of the corrections proposed by GPT-3.5 using several methods: estimating grammaticality with language models (LMs), the Scribendi test, and comparing the semantic embeddings of sentences. GPT-3.5 has a known tendency to over-correct erroneous sentences and propose alternative corrections. For several languages, such as Czech, German, Russian, Spanish, and Ukrainian, GPT-3.5 substantially alters the source sentences, including their semantics, which presents significant challenges for evaluation with reference-based metrics. For English, GPT-3.5 demonstrates high recall, generates fluent corrections, and generally preserves sentence semantics. However, human evaluation for both English and Russian reveals that, despite its strong error-detection capabilities, GPT-3.5 struggles with several error types, including punctuation mistakes, tense errors, syntactic dependencies between words, and lexical compatibility at the sentence level.
Abstract:This paper investigates what insights about linguistic features and what knowledge about the structure of natural language can be obtained from the encodings in transformer language models.In particular, we explore how BERT encodes the government relation between constituents in a sentence. We use several probing classifiers, and data from two morphologically rich languages. Our experiments show that information about government is encoded across all transformer layers, but predominantly in the early layers of the model. We find that, for both languages, a small number of attention heads encode enough information about the government relations to enable us to train a classifier capable of discovering new, previously unknown types of government, never seen in the training data. Currently, data is lacking for the research community working on grammatical constructions, and government in particular. We release the Government Bank -- a dataset defining the government relations for thousands of lemmas in the languages in our experiments.
Abstract:We would like to explore how morphemes can affect the performance of a language model. We trained GPT-2 and Bert model with StateMorph for both Finnish and Russian, which is a morpheme segmenting algorithm. As a comparison, we also trained a model with BPE and Morfessor. Our preliminary result shows that StateMorph can help the model to converge more efficiently and achieve a better validation score.
Abstract:This paper presents the development of an AI-based language learning platform Revita. It is a freely available intelligent online tutor, developed to support learners of multiple languages, from low-intermediate to advanced levels. It has been in pilot use by hundreds of students at several universities, whose feedback and needs are shaping the development. One of the main emerging features of Revita is the introduction of a system of linguistic constructs as the representation of domain knowledge. The system of constructs is developed in close collaboration with experts in language teaching. Constructs define the types of exercises, the content of the feedback, and enable the detailed modeling and evaluation of learning progress.