Abstract:Denoising diffusion models have become ubiquitous for generative modeling. The core idea is to transport the data distribution to a Gaussian by using a diffusion. Approximate samples from the data distribution are then obtained by estimating the time-reversal of this diffusion using score matching ideas. We follow here a similar strategy to sample from unnormalized probability densities and compute their normalizing constants. However, the time-reversed diffusion is here simulated by using an original iterative particle scheme relying on a novel score matching loss. Contrary to standard denoising diffusion models, the resulting Particle Denoising Diffusion Sampler (PDDS) provides asymptotically consistent estimates under mild assumptions. We demonstrate PDDS on multimodal and high dimensional sampling tasks.
Abstract:Score-based generative modelling (SGM) has proven to be a very effective method for modelling densities on finite-dimensional spaces. In this work we propose to extend this methodology to learn generative models over functional spaces. To do so, we represent functional data in spectral space to dissociate the stochastic part of the processes from their space-time part. Using dimensionality reduction techniques we then sample from their stochastic component using finite dimensional SGM. We demonstrate our method's effectiveness for modelling various multimodal datasets.