Abstract:Federated Learning (FL) facilitates decentralized collaborative learning without transmitting raw data. However, reliance on fixed global rounds or validation data for hyperparameter tuning hinders practical deployment by incurring high computational costs and privacy risks. To address this, we propose a data-free early stopping framework that determines the optimal stopping point by monitoring the task vector's growth rate using solely server-side parameters. The numerical results on skin lesion/blood cell classification demonstrate that our approach is comparable to validation-based early stopping across various state-of-the-art FL methods. In particular, the proposed framework spends an average of 47/20 (skin lesion/blood cell) rounds to achieve over 12.5%/10.3% higher performance than early stopping based on validation data. To the best of our knowledge, this is the first work to propose an early stopping framework for FL methods without using any validation data.


Abstract:The rapid growth of Large Language Models (LLMs) presents significant privacy, security, and ethical concerns. While much research has proposed methods for defending LLM systems against misuse by malicious actors, researchers have recently complemented these efforts with an offensive approach that involves red teaming, i.e., proactively attacking LLMs with the purpose of identifying their vulnerabilities. This paper provides a concise and practical overview of the LLM red teaming literature, structured so as to describe a multi-component system end-to-end. To motivate red teaming we survey the initial safety needs of some high-profile LLMs, and then dive into the different components of a red teaming system as well as software packages for implementing them. We cover various attack methods, strategies for attack-success evaluation, metrics for assessing experiment outcomes, as well as a host of other considerations. Our survey will be useful for any reader who wants to rapidly obtain a grasp of the major red teaming concepts for their own use in practical applications.