Abstract:This paper addresses the growing application of data-driven approaches within the Private Equity (PE) industry, particularly in sourcing investment targets (i.e., companies) for Venture Capital (VC) and Growth Capital (GC). We present a comprehensive review of the relevant approaches and propose a novel approach leveraging a Transformer-based Multivariate Time Series Classifier (TMTSC) for predicting the success likelihood of any candidate company. The objective of our research is to optimize sourcing performance for VC and GC investments by formally defining the sourcing problem as a multivariate time series classification task. We consecutively introduce the key components of our implementation which collectively contribute to the successful application of TMTSC in VC/GC sourcing: input features, model architecture, optimization target, and investor-centric data augmentation and split. Our extensive experiments on four datasets, benchmarked towards three popular baselines, demonstrate the effectiveness of our approach in improving decision making within the VC and GC industry.
Abstract:In the investment industry, it is often essential to carry out fine-grained company similarity quantification for a range of purposes, including market mapping, competitor analysis, and mergers and acquisitions. We propose and publish a knowledge graph, named CompanyKG, to represent and learn diverse company features and relations. Specifically, 1.17 million companies are represented as nodes enriched with company description embeddings; and 15 different inter-company relations result in 51.06 million weighted edges. To enable a comprehensive assessment of methods for company similarity quantification, we have devised and compiled three evaluation tasks with annotated test sets: similarity prediction, competitor retrieval and similarity ranking. We present extensive benchmarking results for 11 reproducible predictive methods categorized into three groups: node-only, edge-only, and node+edge. To the best of our knowledge, CompanyKG is the first large-scale heterogeneous graph dataset originating from a real-world investment platform, tailored for quantifying inter-company similarity.