South Westphalia University of Applied Sciences, Germany
Abstract:In this study, we introduce Modular State-based Stackelberg Games (Mod-SbSG), a novel game structure developed for distributed self-learning in modular manufacturing systems. Mod-SbSG enhances cooperative decision-making among self-learning agents within production systems by integrating State-based Potential Games (SbPG) with Stackelberg games. This hierarchical structure assigns more important modules of the manufacturing system a first-mover advantage, while less important modules respond optimally to the leaders' decisions. This decision-making process differs from typical multi-agent learning algorithms in manufacturing systems, where decisions are made simultaneously. We provide convergence guarantees for the novel game structure and design learning algorithms to account for the hierarchical game structure. We further analyse the effects of single-leader/multiple-follower and multiple-leader/multiple-follower scenarios within a Mod-SbSG. To assess its effectiveness, we implement and test Mod-SbSG in an industrial control setting using two laboratory-scale testbeds featuring sequential and serial-parallel processes. The proposed approach delivers promising results compared to the vanilla SbPG, which reduces overflow by 97.1%, and in some cases, prevents overflow entirely. Additionally, it decreases power consumption by 5-13% while satisfying the production demand, which significantly improves potential (global objective) values.
Abstract:This article describes a novel game structure for autonomously optimizing decentralized manufacturing systems with multi-objective optimization challenges, namely Distributed Stackelberg Strategies in State-Based Potential Games (DS2-SbPG). DS2-SbPG integrates potential games and Stackelberg games, which improves the cooperative trade-off capabilities of potential games and the multi-objective optimization handling by Stackelberg games. Notably, all training procedures remain conducted in a fully distributed manner. DS2-SbPG offers a promising solution to finding optimal trade-offs between objectives by eliminating the complexities of setting up combined objective optimization functions for individual players in self-learning domains, particularly in real-world industrial settings with diverse and numerous objectives between the sub-systems. We further prove that DS2-SbPG constitutes a dynamic potential game that results in corresponding converge guarantees. Experimental validation conducted on a laboratory-scale testbed highlights the efficacy of DS2-SbPG and its two variants, such as DS2-SbPG for single-leader-follower and Stack DS2-SbPG for multi-leader-follower. The results show significant reductions in power consumption and improvements in overall performance, which signals the potential of DS2-SbPG in real-world applications.
Abstract:This paper presents a novel transfer learning approach in state-based potential games (TL-SbPGs) for enhancing distributed self-optimization in manufacturing systems. The approach focuses on the practical relevant industrial setting where sharing and transferring gained knowledge among similar-behaved players improves the self-learning mechanism in large-scale systems. With TL-SbPGs, the gained knowledge can be reused by other players to optimize their policies, thereby improving the learning outcomes of the players and accelerating the learning process. To accomplish this goal, we develop transfer learning concepts and similarity criteria for players, which offer two distinct settings: (a) predefined similarities between players and (b) dynamically inferred similarities between players during training. We formally prove the applicability of the SbPG framework in transfer learning. Additionally, we introduce an efficient method to determine the optimal timing and weighting of the transfer learning procedure during the training phase. Through experiments on a laboratory-scale testbed, we demonstrate that TL-SbPGs significantly boost production efficiency while reducing power consumption of the production schedules while also outperforming native SbPGs.
Abstract:In this paper, we propose novel quaternion activation functions where we modify either the quaternion magnitude or the phase, as an alternative to the commonly used split activation functions. We define criteria that are relevant for quaternion activation functions, and subsequently we propose our novel activation functions based on this analysis. Instead of applying a known activation function like the ReLU or Tanh on the quaternion elements separately, these activation functions consider the quaternion properties and respect the quaternion space $\mathbb{H}$. In particular, all quaternion components are utilized to calculate all output components, carrying out the benefit of the Hamilton product in e.g. the quaternion convolution to the activation functions. The proposed activation functions can be incorporated in arbitrary quaternion valued neural networks trained with gradient descent techniques. We further discuss the derivatives of the proposed activation functions where we observe beneficial properties for the activation functions affecting the phase. Specifically, they prove to be sensitive on basically the whole input range, thus improved gradient flow can be expected. We provide an elaborate experimental evaluation of our proposed quaternion activation functions including comparison with the split ReLU and split Tanh on two image classification tasks using the CIFAR-10 and SVHN dataset. There, especially the quaternion activation functions affecting the phase consistently prove to provide better performance.
Abstract:In this paper, we introduce novel gradient-based optimization methods for state-based potential games (SbPGs) within self-learning distributed production systems. SbPGs are recognised for their efficacy in enabling self-optimizing distributed multi-agent systems and offer a proven convergence guarantee, which facilitates collaborative player efforts towards global objectives. Our study strives to replace conventional ad-hoc random exploration-based learning in SbPGs with contemporary gradient-based approaches, which aim for faster convergence and smoother exploration dynamics, thereby shortening training duration while upholding the efficacy of SbPGs. Moreover, we propose three distinct variants for estimating the objective function of gradient-based learning, each developed to suit the unique characteristics of the systems under consideration. To validate our methodology, we apply it to a laboratory testbed, namely Bulk Good Laboratory Plant, which represents a smart and flexible distributed multi-agent production system. The incorporation of gradient-based learning in SbPGs reduces training times and achieves more optimal policies than its baseline.
Abstract:We propose a novel quaternionic time-series compression methodology where we divide a long time-series into segments of data, extract the min, max, mean and standard deviation of these chunks as representative features and encapsulate them in a quaternion, yielding a quaternion valued time-series. This time-series is processed using quaternion valued neural network layers, where we aim to preserve the relation between these features through the usage of the Hamilton product. To train this quaternion neural network, we derive quaternion backpropagation employing the GHR calculus, which is required for a valid product and chain rule in quaternion space. Furthermore, we investigate the connection between the derived update rules and automatic differentiation. We apply our proposed compression method on the Tennessee Eastman Dataset, where we perform fault classification using the compressed data in two settings: a fully supervised one and in a semi supervised, contrastive learning setting. Both times, we were able to outperform real valued counterparts as well as two baseline models: one with the uncompressed time-series as the input and the other with a regular downsampling using the mean. Further, we could improve the classification benchmark set by SimCLR-TS from 81.43% to 83.90%.
Abstract:Quality scheduling in industrial job shops is crucial. Although neural networks excel in solving these problems, their limited explainability hinders their widespread industrial adoption. In this research, we introduce an innovative framework for solving job shop scheduling problems (JSSP). Our methodology leverages Petri nets to model the job shop, not only improving explainability but also enabling direct incorporation of raw data without the need to preprocess JSSP instances into disjunctive graphs. The Petri net, with its controlling capacities, also governs the automated components of the process, allowing the agent to focus on critical decision-making, particularly resource allocation. The integration of event-based control and action masking in our approach yields competitive performance on public test benchmarks. Comparative analyses across a wide spectrum of optimization solutions, including heuristics, metaheuristics, and learning-based algorithms, highlight the competitiveness of our approach in large instances and its superiority over all competitors in small to medium-sized scenarios. Ultimately, our approach not only demonstrates a robust ability to generalize across various instance sizes but also leverages the Petri net's graph nature to dynamically add job operations during the inference phase without the need for agent retraining, thereby enhancing flexibility.
Abstract:We propose a novel methodology to define assistance systems that rely on information fusion to combine different sources of information while providing an assessment. The main contribution of this paper is providing a general framework for the fusion of n number of information sources using the evidence theory. The fusion provides a more robust prediction and an associated uncertainty that can be used to assess the prediction likeliness. Moreover, we provide a methodology for the information fusion of two primary sources: an ensemble classifier based on machine data and an expert-centered model. We demonstrate the information fusion approach using data from an industrial setup, which rounds up the application part of this research. Furthermore, we address the problem of data drift by proposing a methodology to update the data-based models using an evidence theory approach. We validate the approach using the Benchmark Tennessee Eastman while doing an ablation study of the model update parameters.
Abstract:The digital transformation of automation places new demands on data acquisition and processing in industrial processes. Logical relationships between acquired data and cyclic process sequences must be correctly interpreted and evaluated. To solve this problem, a novel approach based on evolutionary algorithms is proposed to self optimise the system logic of complex processes. Based on the genetic results, a programme code for the system implementation is derived by decoding the solution. This is achieved by a flexible system structure with an upstream, intermediate and downstream unit. In the intermediate unit, a directed learning process interacts with a system replica and an evaluation function in a closed loop. The code generation strategy is represented by redundancy and priority, sequencing and performance derivation. The presented approach is evaluated on an industrial liquid station process subject to a multi-objective optimisation problem.
Abstract:Quaternion valued neural networks experienced rising popularity and interest from researchers in the last years, whereby the derivatives with respect to quaternions needed for optimization are calculated as the sum of the partial derivatives with respect to the real and imaginary parts. However, we can show that product- and chain-rule does not hold with this approach. We solve this by employing the GHRCalculus and derive quaternion backpropagation based on this. Furthermore, we experimentally prove the functionality of the derived quaternion backpropagation.